
88

©Authors
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0
International License (CC BY-NC-ND 4.0).

International Journal of Learning, Teaching and Educational Research
Vol. 20, No. 6, pp. 88-108, June 2021
https://doi.org/10.26803/ijlter.20.6.5

Improving Novice Students’ Computational
Thinking Skills by Problem-Solving and

Metacognitive Techniques

Nor Hasbiah Ubaidullah, Zulkifley Mohamed, Jamilah Hamid and
Suliana Sulaiman

Universiti Pendidikan Sultan Idris, Perak, Malaysia
https://orcid.org/0000-0002-4753-5382
https://orcid.org/0000-0003-1170-046X
https://orcid.org/0000-0003-2761-1074
https://orcid.org/0000-0002-2440-8831

Rahmah Lob Yussof

Universiti Teknologi MARA, Pahang, Malaysia
https://orcid.org/0000-0002-0650-9428

Abstract. Admittedly, the teaching and learning of programming courses
in the computer science and information technology programs have been
extremely challenging. Currently, most instructors depend on either the
problem-solving technique or the metacognitive technique to help
students develop a range of cognitive skills, including metacognitive
skills, which are important in the development of a strong computational
thinking skill required for 21st-century learning. Studies focusing on the
practices of instructors in using both techniques are scarce, thus
motivating the researchers to carry out this study. This study was based
on a qualitative approach involving a case-study design in which five (5)
male and five (5) female instructors were selected from 10 pre-university
centers in Malaysia as the respondents and participants in an intervention
program. The research instruments used were an interview checklist and
intervention guidelines. As anticipated, the findings showed that the
activities of each technique could only help students develop certain sub-
skills of the computational thinking skill, thus underscoring the need for
instructors to integrate both techniques in their teaching practices. Thus,
it could be reasoned that using either the metacognitive technique or the
problem-solving technique alone would not be sufficient to help students
develop strong computational thinking skills, as each technique has its
strengths and weaknesses. Therefore, it becomes imperative for
instructors to leverage the strengths of both techniques by integrating
both of them in the teaching and learning of programming courses.

Keywords: computational thinking skill; teaching and learning
techniques; learning computer programming; programming teaching

https://orcid.org/0000-0002-4753-5382
https://orcid.org/0000-0003-1170-046X
https://orcid.org/0000-0003-2761-1074
https://orcid.org/0000-0002-2440-8831
https://orcid.org/0000-0002-0650-9428

89

http://ijlter.org/index.php/ijlter

1. Introduction
Lately, a growing number of researchers and scholars have highlighted the
importance of computational thinking (CT) in programming, made evident by
an increasing number of studies that focus on such a construct, such as studies
by Margarida (2017) and Xabier et al. (2018). To date, CT skills have been widely
researched in many developed nations; In Malaysia, however, studies of such
nature have been scarce. Nonetheless, in recent years, many stakeholders in the
educational sector have put greater emphasis on the importance of CT in
education, particularly in computer programming. For example, the Ministry of
Education of Malaysia integrated elements of CT in the school curriculum in
2017 (Ung, 2017). With this integrated curriculum, students would be able to
learn basic computer science through activities involving problem-solving and
logical thinking (Ministry of Education Malaysia, 2016). Specifically, the
elements of CT, such as logical reasoning, estimation, developing the algorithm,
and abstraction, were embedded in the new curriculum encompassing all levels
of education from primary to tertiary education (Ministry of Education Malaysia,
2016), signifying that all the stakeholders were strongly aware of the importance
of students to acquire this important skill. Lately, many Malaysian school
teachers have gone through a series of workshops to train them methods that
they could use to teach students such a concept. The same is, however, not
forthcoming for college and university lecturers; thus, it is hardly surprising to
see them having difficulties in identifying effective methods that they could use
to help develop strong CT skills among their students. As such, appropriate
measures are needed to mitigate this predicament to ensure they could
effectively teach students to become digital makers in Malaysia (Aizyl, 2016;
Joseph, 2016).

As such, it is vital to carry out more studies on the development of CT by
focusing on appropriate activities in the learning of information technology and
computer science, particularly programming courses. Surely, the findings of
such studies could inform practitioners of the appropriate teaching techniques
that they could use to help students develop such skills (Filiz, 2016). Admittedly,
many studies have been carried out thus far, but they were primarily focused on
metacognitive and problem-solving skills needed for programming (Havenga,
2015), with only a handful being dedicated to investigating their relations to CT.
To date, a growing number of local researchers have carried out several studies
that dealt with such a research focus (Mohd Rum, 2015; Ung, 2017). Such studies,
however, mainly centered on the preparation of schools’ teachers who would
implement teaching activities that could enhance students’ CT. By contrast, there
is a dearth of similar studies that focus on the preparation of college and
university lecturers that would them choose proper teaching and learning
techniques to help improve undergraduates’ and college students’ CT.
Hence, this research was conducted to address such a research gap by focusing
on metacognitive, problem-solving, CT skills, and programming. This study was
premised on the teaching and learning of information technology in general and
programming particularly among novice learners by examining appropriate
techniques with which lecturers could use to enhance students’ CT skills. In this
study, metacognitive and problem-solving skills were integrated into the

90

http://ijlter.org/index.php/ijlter

teaching and learning of a programming course. Thus, to direct research, two
research questions have been formulated:
1. How would lecturers apply metacognitive and problem-solving techniques in

the computer programming teaching environment to improve novice students’
CT skills?

2. How would metacognitive and problem-solving techniques be embedded in
the learning of a programming course to improve novice students’ CT skills?

This study is crucial as it is an initial step for instructors in developing CT skills
among students. As emphatically noted by Malaysia’s premier, students need to
have well-developed CT skills that would help nations in developing a capable
generation of digital makers (Aizyl, 2016; Joseph, 2016).

2. Literature Review
Nowadays, more and more people need to depend on computational thinking
(CT) skills to perform a broad spectrum of tasks. This skill is indispensable given
its importance in today’s information-driven societies, entailing people to think
logically, analytically, and systematically in solving numerous problems (Swaid,
2015). According to Park (2016), CT involves problem-solving skills in
programming with the creative use of computer hardware and software.
Specifically, according to Wing (2016), individuals tap on their CT as they try to
solve a complex problem by mathematically decomposing it into small units.
From the learning perspective, the same researcher argues that students with
good CT would be able to create command-line algorithms for a computer to
perform a specific task in solving a particular problem. In other words, they
reason that CT skills are closely related to problem-solving skills by using the
computer. More broadly, it can reasoned that CT skills are associated with
problem-solving skills without the use of the computer in various fields, such as
science and mathematics. For example, CT skills can also be developed through
the teaching of sciences or languages at the elementary school level. As such,
such skills should be viewed in a more diverse, multi-disciplinary context.

According to Mannila et al. (2014), CT is a term that encompasses a set of
concepts and processes of computer science involved in deriving solutions to
problems in several disciplines. In essence, according to Selby (2015), CT is
defined as a multi-faceted skill comprising several sub-skills, namely
abstraction, decomposition, evaluation, generalization, and algorithmic
thinking. As such, the concepts of CT can be implemented in the classroom, such
as logic, algorithm, decomposition, pattern, abstraction, and evaluation
(Barefootcas, 2014). The definitions of such a concept made by Mannila et al.
(2014), Selby (2015), and Barefootcas (2014) underscore that CT, which is an
extremely important skill in the computing field, can also be applied to other
important fields of knowledge.

Over recent years, several scholars, including Margarida et al. (2017), Denning
(2017), Buitrago Flórez et al. (2017), and Xabier et al. (2018), have embedded such
concepts in the computer science and information technology fields through
programming courses, given their close relationships. As emphasized by

91

http://ijlter.org/index.php/ijlter

Margarida et al. (2017), CT skills can be developed and assessed through ill-
defined problems at different educational levels. Essentially, CT skill concerns
one’s ability to analyze problems, make informed decisions, and solve problems
creatively (Kafai, 2016). As such, from a practical standpoint, students’ abilities
in solving problems through logical thinking and in writing codes for computer
applications and hardware are a measure of their CT (Djambong & Freiman,
2016). In this respect, logical thinking and the skill in writing codes are two
important elements in learning programming. Given that the elements of CT
(namely abstraction, decomposition, evaluation, generalization, and algorithmic
thinking) are closely related to the skills needed in solving computer
programming, such as logical thinking, CT can, therefore, be developed through
the teaching of computer programming.

Moreover, programming for applications of systems and hardware in diverse
fields can serve as a medium of CT (Voogt et al., 2015). More importantly,
programming is a critical discipline of knowledge that students of computer
science and information technology must master. However, most students find
programming to be a difficult subject or course to learn, let alone to master it
(Nurul Faeizah et al., 2020). Specifically, students face difficulties in solving
programming problems that entail them to have the proper skills to deal with
the problem-solving, syntax, and semantic of a programming language (Malik &
Cildwell-Neilson, 2017; Hooshyar et al., 2015). As observed by many researchers,
most students, in particular novice students, lack critical thinking and problem-
solving skills to help them learn computer programming (Djambong & Freiman,
2016; Poli & Koza, 2014). In view of the challenges facing students in learning
computer programming, teachers and instructors need to be creative in their
teaching to help stimulate students to think logically and critically, which will
certainly help them solve computing problem effectively and efficiently.

Essentially, critical thinking refers to the use of cognitive skills or strategies to
achieve an intended outcome. In other words, critical thinking is purposeful,
reasoned, and goal-directed mental process for solving problems, formulating
inferences, calculating likelihoods, and making decisions (Halpern, 1999). As
emphasized by Ramdiah and Duran (2014), critical thinking involves the skillful
handling of the structure inherent in thinking by imposing intellectual standards
upon it. On the other hand, Paul et al. (1993) argued that critical thinking is self-
directed, self-disciplined, self-monitored, and self-corrective thinking. The same
scholars assert that the capacity to solve problems is an important aspect of
analytical thought, which encompasses general problem-solving interventions,
including problem recognition, problem description, approach planning, the
organizing of knowledge and resource distribution, tracking, and assessment
(Sterberg & Sterberg, 2012). In the context of learning programming, the
problem-solving steps required include the identification and definition of
problems, the planning of problem-solving, the design of problem-solving,
coding, testing, and documentation. In this regard, problem-solving skills refer
to the ability to solve problems accurately, identify and define problems, propose
alternative solutions, test and select the best alternative, and implement the
selected solution. On the other hand, critical thinking relates to self-directed, self-

92

http://ijlter.org/index.php/ijlter

disciplined, self-monitored, and self-corrective thinking. Juxtaposing the above
two skills, it can be clearly seen that critical thinking skills and problem-solving
skills are closely related to one another.

Certainly, a lack of problem-solving skills contributes to students’ poor
performances in learning programming (Mohd Rum, 2015), a subject matter
consisting of complex, abstract concepts that make it difficult for students to
understand, interpret, and perform complex tasks (Malik & Coldwell-Neilson,
2017). Thus, they must have strong analytical, logical, and problem-solving skills
as well as the skill in learning a particular programming language. The latter is
important because programming allows students to analyze their thought
processes and their strategies as a cognitive exercise that encourages the method
of applying a newly learned solution to new problems (Mohd Rum, 2015). The
practice of problem-solving in computer programming can improve students’
cognitive skills, allowing them to work methodically to build representations
(Mayer, 2003). Such a practice provides the opportunity to help students develop
strong metacognition. For example, Bergin et al. (2005) signified that students
who achieved well in programming were more reliant than low-performing
students on metacognitive management techniques, thus underlining the value
of having strong metacognitive abilities for students to help them learn to
program.

Metacognition refers in essence to the deliberate preparation, monitoring, and
assessment of the cognitive processes of individuals, such as their emotions, as
they participate in the learning process (Sterberg & Sterberg, 2012). On the one
hand, metacognitive knowledge refers to a more advanced level of knowledge
that allows students to monitor, handle, interpret, and understand their
knowledge during the learning process (Gaeta, 2014; Nimmi & Zakkariya, 2016).
According to Abdullah et al. (2017), metacognition consists of two parts, namely
the knowledge component and the skill component. Between these two
components, the latter is deemed more important in the learning of computer
programming as it helps students to effectively engage in problem-solving
activities in which they learn to solve programming problems. Thus,
metacognitive strategies or skills are critical to effective learning as they influence
the control of cognition in activities involving planning, orienting, monitoring,
checking, selecting, revising, evaluating, self-monitoring, and self-evaluating. As
emphasized by Brown (1992), students need to have strong metacognition to
enable them monitor their processes of thought strategically and effectively.
Therefore, teachers’ instructions and feedback in the teaching and learning
process would have a profound impact on the development of students’
metacognitive skills (Veenman, 2006; Hinojosa, Rodriguez & Paez, 2020).

Despite the plethora of studies on the use of problem-solving and metacognition
techniques in computer programming, not many studies have been devoted to
studying their impacts on the development of CT skills. Thus far, only a handful
of such studies has been carried out in Malaysia, which mainly involve the
applications of such techniques at the school level that focused on teachers’
readiness in implementing the techniques. Therefore, this study was carried out

93

http://ijlter.org/index.php/ijlter

that focused on the teaching techniques that could be used to improve pre-
university students’ CT skills. Specifically, this study aimed to examine the
impacts of the integration of problem-solving and metacognition techniques on
the improvement of CT skills among novice programming students.

3. Methods
This qualitative study was based on a case study research design involving a
series of semi-structured interviews in which several computer programming
instructors were interviewed. In the interviews, information regarding their
teaching activities before and after a learning intervention based on specific
metacognitive and problem-solving guidelines was gathered to address the
research questions.

3.1 Procedure
The procedure of the data collection of this study was slightly adapted from that
used by Havenga (2015) who used a series of interviews that were carried out
before and after an intervention. Such a slight adaptation was made to suit the
context of this study. In particular, this study consisted of two phases, namely
Phase 1 and Phase 2. The former involved collecting data and information on CT,
while the latter concerned eliciting lecturers’ opinions regarding their teaching
practices before and after the intervention, which helped highlight any teaching
changes that might have occurred.

The following are the two phases of the activities carried out in this study.
Phase 1: In the first phase, a critical review of the current literature was performed
to help determine aspects of CT that need further research. The review of the
literature was primarily centered on relevant studies published in books, research
papers, conference proceedings, and journal articles.

Phase 2: In the second phase, a case study was carried out where the researchers
interviewed several instructors to elicit their feedback on their teaching practices
before and after a learning intervention, which focused on helping to enhance
novice programming students’ CT skills. This approach enabled the researchers
to determine if there was a substantial change in their teaching practice, which is
in line with recommendations made by Gill (2011).

3.2 Respondents
The respondents of the study were made up of ten (10) instructors of a
programming course taught at several pre-university colleges, who were
recruited through the purposeful sampling technique. They were primarily
selected due to their involvement in the teaching of programming in which
metacognitive and problem-solving techniques were used. Each one holds a
Master Science’s degree in either computer science or information technology and
had a teaching experience of at least five (5) years. Table 1 summarizes the
demographics of the selected instructors.

94

http://ijlter.org/index.php/ijlter

Table 1: The Demographics of the participants

Participant
 ID

Gender Age
 (in a year)

Working
experience (in

a year)

P1 Female 39 9

P2 Male 44 15

P3 Female 40 7

P4 Male 40 17

P5 Male 45 8

P6 Female 38 5

P7 Male 42 12

P8 Male 40 15

P9 Female 50 25

P10 Female 48 23

3.3 Data collection
Data were gathered through a series of semi-structured interviews involving
programming instructors, which were conducted two times to elicit appropriate
information on their teaching practices before and after the learning intervention.
The following sub-sections provide a detailed account of the pre-intervention
interviews, learning intervention, and post-intervention interviews.
1. Pre-intervention interviews: The pre-intervention interview sessions were
carried out one week before the intervention program to help determine whether
the programming instructors had taught their students any metacognitive and
problem-solving skills.
2. Learning intervention: In the intervention, the instructors were guided to
perform specific steps to derive proper solutions to programming problems based
on problem-solving guidelines and metacognitive skills as follows:

• Carefully read a given problem, highlight the main ideas, and comprehend
and write down the main requirements of the problem. Review and refine
such ideas and requirements as needed.

• Formulate a solution to the problem.

• Spell out the details of the required steps in terms of appropriate inputs,
processing, and outputs. Highlight their aims and the processes involved.

• Go through the solution that you have proposed.

• With a given programming language, code all the above elements into a
program. Examine your program for any programming errors and
carefully evaluate the steps that you have performed.

• Test your program.

• Carefully review the programming codes and programming semantics.

• Determine how effective your solution and explain whether it is the best
solution.

3. Post-intervention interviews: The final interviews were carried out to elicit
information regarding instructors’ overall experiences in the intervention
program. They were prompted with the following question: In what way
would your experiences in using metacognitive and problem-solving skills
relate to your teaching approach that could help improve your students’
programming and CT skills?

95

http://ijlter.org/index.php/ijlter

4. Results
The findings of the study are discussed based on two themes, namely Theme 1
(Using problem-solving competence in programming teaching and learning) and
Theme 2 (Using metacognitive competence in programming teaching and
learning). In turn, the discussions of the two themes are divided into two sub-
sections, namely before the intervention and after the intervention.

4.1 Theme 1: Using Problem-Solving Competence in Programming Teaching

and Learning
1. Before Intervention: The feedback of the instructors indicated that they used
specific problem-solving activities in their teaching practices before the
intervention. For example, the first, second, seventh, and tenth participants, P1,
P2, P7, and P10, stressed the analysis of questions by instructing their students to
determine the appropriate input, process, and output during the planning of their
programs, as exemplified by the second instructor’s feedback regarding his
students’ work as follows: “… the students first construct the input, process, and
output (IPO) table, and then they jot down the required steps. Also, they emphasized
the use of algorithms as part of the detailed planning of programs, as highlighted
by the same participant who gave the following feedback: “algorithms are essential
to solving programming problems effectively. Hence, after constructing the IPO table,
they should perform the algorithms before moving to the next steps”. Even though the
third, fifth, and eighth participants, P3, P5, and P8, did submit their students’
homework, there was no mention of any specific problem-solving activities used
by their students in solving the programming problem. By contrast, the sixth and
ninth participants, P6 and P9, confessed that they did help their students by
demonstrating the proper steps in analyzing programming problems.

2. After Intervention: Once they had undergone the intervention, the instructors
put a greater emphasis on the detailed requirements for each problem-solving
step. For example, P3’s comments were highly informative as follows: “After they
had split the problem into several sub-problems, the students could formulate a solution,
as it became easier for them to manage the sub-problems as opposed to dealing with the
main problem.” Moreover, the use of the guidelines proved to be extremely helpful,
made clear by the same participant’s comment as follows: “The students were
compelled to think critically and logically as they tried to solve the problem, entailing them
to perform the appropriate steps in developing a program”. Likewise, the fourth
participant’s (P4) remark was equally compelling when he said the following
words:

“Students must familiarize the first step before attempting to perform the ensuing steps
that lead to the final solution”. Also, he elaborated on some strategies that could be
used to deal with programming problems. By contrast, the fifth participant (P5)
stressed the importance of time that students should take into consideration in
analyzing problems, as clearly highlighted by his comment as follows: “Spending
more time in analyzing the problems helped students to gain a better understanding,
which led to better solutions”. Table 2 summarizes the problem-solving activities
deemed highly effective by the instructors in the teaching and learning of
programming before and after the intervention.

96

http://ijlter.org/index.php/ijlter

As clearly shown, a majority of the instructors used problem-solving activities,
namely analysis, planning and design, in their teaching of programming before
and after intervention. For example, only Participant 6 and Participant 9 used the
analysis activity in their teaching before intervention. Also, Participant 1,

Table 2: Highly emphasized problem-solving activities in the teaching and
learning of programming before and after the intervention

Before Intervention After Intervention

Participant Activities Participant Activities

Participant 1 Planning
- analysis (IPO)
Design
- algorithm

Participant 1 Planning
- analysis (IPO)
Design
- algorithm

Participant 2 Planning
- analysis (IPO)
Design
- algorithm

Participant 2 Planning
- analysis (IPO)
Design
- algorithm

Participant 3 Assigning homework
- (specific activities

were not mentioned)

Participant 3 Planning
- breakdown the
problem
- think critically and
logically

Participant 4 - not available Participant 4 Observation
Discussion
- strategy on how to
approach a
programming problem

Participant 5 Assigning homework
- (specific activities

were not mentioned)

Participant 5 Analysis
- need time when
performing analysis

Participant 6 Analysis
- discuss the analysis
of programming
problems

Participant 6 Analysis
- discuss the analysis
of programming
problems

Participant 7 Planning
- analysis (IPO)
Design
- algorithm

Participant 7 Planning
- analysis (IPO)
Design
- algorithm

Participant 8 Assigning homework
- (specific activities

were not mentioned)

Participant 8 Planning
- breakdown the
problem
- think critically and
logically

Participant 9 Analysis
- discuss the analysis
of programming
problems

Participant 9 Analysis
- discuss the analysis
of programming
problems

Participant 10 Planning
- analysis (IPO)
Design
- algorithm

Participant 10 Planning
- analysis (IPO)
Design
- algorithm

97

http://ijlter.org/index.php/ijlter

Participant 2, Participant 7, and Participant 10 used the planning and design
activities in their teaching of programming. However, after intervention, more
participants used all the problem-solving activities in their teaching of
programming. In particular, the number of participants who used the analysis
activity increased to three (3). This was made evident by Participant 5, Participant
6 and Participant 9, who previously had never used such an activity, had now
used the analysis activity in their teaching. Likewise, the number of participants
who used the planning and design activities had increased to six (6), as
exemplified by Participant 1, Participant 2, Participant 3, Participant 7, Participant
8, and Participant 10 who used such activities in their teaching after the
intervention.

Admittedly, performing these activities entail students to have good
programming skills. Furthermore, these activities are closely related to the
elements of CT skills. For example, the analysis, design, and planning of problem-
solving activities are closely related to the abstraction, algorithm, and
decomposition and generalization of CT, respectively. As such, performing the
former activities can help students enhance the latter skills. Given these
revelations, it is, therefore, important for programming lecturers to embed such
problem-solving activities in the teaching of computer programming, the impacts
of which can enhance both students’ programming skills and CT skills.

4.2 Theme 2: Using Metacognitive Competence in Programming Teaching and

Learning
1. Before Intervention: The feedback elicited showed that the respondents also
relied on some form of metacognitive skills in their teaching practices before the
intervention. For example, the first participant (P1) allowed her students to plan
their solutions before writing codes, as evidenced by her comments as follows:
“Usually, I would discuss the problem first with my students by asking them to analyze
the algorithms before writing the essential codes. Hence, they wrote the codes on a piece of
paper before coding those algorithms on the computer”. On the other hand, the fourth
participant (P4) allowed his students to explore the detail of a new topic based on
the belief that the students could direct their thinking processes, made clear by his
comment as follows: “I made a point to always to encourage my students to use their
creativity in coding”. By contrast, the sixth participant (P6) relied on other
strategies, namely problem-based learning, and collaborative learning, to help
guide her students’ self-directed learning activities.

2. After Intervention: As prescribed by the guidelines of the intervention
program, the instructors gave some examples of the metacognitive skills that they
had taught in the classroom. In particular, the first, second, and fifth participants
(P1, P2, and P5) stressed the importance of planning a solution before writing a
program, which could be discerned by some of their comments, such as those
made by the first participant (P1) as follows:
“The greater their efforts in planning, the greater they could understand the question …
the students could tackle the question quite easily. I think most of them were able to do
just that” and “… therefore, to each question, every student was prompted to ask, ‘What
must I have to do to answer this question?’”. Likewise, the second participant’s (P2’s)
comments were also revealing based on the statements he made as follows:

98

http://ijlter.org/index.php/ijlter

“Students should do the planning before they wrote the program, as it was very important
… they simply could not go to the computer and write the coding”. The above comments
made by the first and second supported students’ mental activities by guiding
them to refocus on a problem in hand, while the fourth participant (P4)
emphasized the importance of such activities based on his feedback as follows: “It
certainly helped them to fully grasp the problem”. The third participant’s (P3’s)
stressed the importance of scaffolding as highlighted by her comment as follows:
“At first, I guided my students. Then, as they could understand the problem and had some
ideas on how to solve it, I let them continue with their work”. Interestingly, the sixth
participant (P6) asserted that he had to divide students into several groups to
facilitate them to discuss their problems more effectively. As a whole, the above
findings are consistent with Francom (2010) and Mohd Rum (2015), who found
subject-matter knowledge and self-directed learning skills (e. g. metacognition)
collectively helped students to manage their thinking processes. Table 3
summarizes the metacognitive activities that the participants deemed important
in the teaching and learning of programming before and after the intervention.

Table 3: Highly emphasized metacognitive activities in the teaching and learning of

programming before and after the intervention

Before Intervention After Intervention

Participant Activities Participant Activities

Participant 1 Planning
- provided a chance

for students to plan
their solutions

Participant 1 Planning
- students involved

actively in their
programming tasks

Participant 2 - not available Participant 2 Planning
- students involved

actively in their
programming tasks

Participant 3 - not available Participant 3 - scaffolding

Participant 4 Discovering
- students discovered
details.
-encouraged students
to be creative

Participant 4 Planning
- students involved

actively in their
programming tasks

Participant 5 - not available Participant 5 Planning
- students involved

actively in their
programming tasks

Participant 6 Using additional
strategies
- problem-based
learning
- collaborative
learning
(enhanced self-
directed learning)

Participant 6 Discussion
- supported students
by group
 Discussion

99

http://ijlter.org/index.php/ijlter

As shown in Table 3, the only metacognitive activity used by the instructors was
planning, as indicated by Participant 1 and Participant 7 who practiced such an
activity in their teaching before the intervention. The remaining participants,
however, used other types of teaching activities that were related to those of
problem based-learning and collaborative learning. Interestingly, after the
intervention, more participants used the metacognitive activities in their teaching
of programming. Specifically, the number of participants who used the planning
activity increased to seven (7), as demonstrated by Participant 1, Participant 2,
Participant 4, Participant 5, Participant 7, Participant 8, and Participant 10.
Arguably, the planning activity is one of the important steps in programming that
every programming student need to learn and master. Moreover, such an activity
can also help enhance students’ decomposition and generalization abilities, which
constitute two of the components of CT skills. Therefore, by performing the
planning activity, students will be able to enhance both their programming skills
and CT skills.

5. Discussion
The analysis of respondents’ feedback based on the first theme (Theme 1) showed
that only three instructors had integrated problem-solving activities, namely
analysis, and planning, in their teaching practices before they followed the
intervention program. As anticipated, after the intervention, more instructors
indicated that they had integrated more specific problem-solving activities in their
teaching, which could be attributed to their compliance with the guidelines given
to them. Arguably, most instructors not only knew but also were quite conversant
with a problem-solving technique that is widely regarded as the most popular
technique in teaching and learning programming, thus compelling them to
integrate it into their teaching practices. Such findings are consistent with Malik
and Coldwell-Neilson (2017), Hooshyar et al. (2015), and Mohd Rum (2015), most
of whom assert that problem-solving is an effective strategy to help students to
understand and solve programming problems. Also, the same findings showed
that majority of the instructors utilized analysis and planning activities in their

Participant 7 Planning
- provided a chance

for students to plan
their solutions

Participant 7 Planning
- students involved

actively in their
programming tasks

Participant 8 - not available Participant 8 Planning
- students involved

actively in their
programming tasks

Participant 9 - not available Participant 9 - scaffolding

Participant 10 Discovering
- students discovered
details.
-encouraged students
to be creative

Participant 10 Planning
- students involved

actively in their
programming tasks

100

http://ijlter.org/index.php/ijlter

teaching after the intervention. Oddly, only one instructor used observation and
discussion activities in teaching his students.

In this regard, the discussion technique could serve as an effective means to help
students, especially novice students, learn to program as they could suggest
creative ideas and work collaboratively to solve programming problems.
Certainly, such a learning process could help them improve their logical thinking.
As such, instructors had to be resourceful and creative in stimulating effective
discussions among their students. As revealed in this study, a combination of
problem-solving and discussion techniques could help train novice students to
enhance their logical thinking and problem-solving skills. Such findings are
consistent with those of previous studies, signifying such techniques as highly
effective (Malik & Coldwell-Neilson, 2017; Uysal, 2014).

Essentially, solving a given programming problem entails students performing
several activities, namely analysis, planning, design, coding, and evaluation,
which were given strong emphasis by the instructors as shown in Table 2. Such
emphasis was not unexpected as these activities are critical components of
problem-solving techniques that students had to apply before carrying out other
ensuing activities. In the analysis activity, students were required to correctly
identify the input, process, and output, which were essential to helping them to
enhance their abstraction skills by identifying and extracting information that
could help define the main idea of a given problem. On the other hand, the
planning activity could help improve their decomposition skills, enabling them to
split problems into smaller, manageable parts. As such, the above two activities,
namely, analysis and planning, are deemed important steps in problem-solving.
Therefore, it was not surprising to note that most instructors paid strong attention
to these two activities to ensure their students would be able to perform other
ensuing activities, namely, design, coding, and evaluation. Put simply, by
performing these two activities, students would be able to improve their
abstraction (Seong-Won & Youngjun, 2020) and decomposition skills, which are
two critical sub-skills of the CT skill (Román-González, 2017). Such findings are
consistent with that of Mohd Rum (2015), indicating that teachers’ instructions of
management processes and activities can help students improve their learning
performances.

The remaining activities, namely design, coding, and evaluation, are equally
important in solving programming problems. In the design activity, students had
to determine the proper steps to perform in the right sequence in solving the given
problem. Surely, a high level of logical reasoning is required to solve problems by
visualizing algorithms in a mental picture. In this regard, they use the algorithms
and logical thinking concepts of CT. The next stage of programming is the
implementation stage, which consists of several activities involving coding,
compilation, linking, running, and debugging a program, necessitating strong
logical thinking involving coding and identifying and correcting errors, which
collectively could help improve students’ CT in terms of algorithmic thinking
skill.

101

http://ijlter.org/index.php/ijlter

The final stage of programming involves the evaluation activity, which is needed
to test and validate a program. After being verified to be free of any error, the
program needs to be tested with different inputs to ensure it could fulfill the
requirements of a given problem and produce accurate output. In principle, this
activity is equivalent to the concept of evaluation in CT. As asserted, novice
students’ CT skills could be enhanced through learning programming with the
use of the above teaching techniques. Such an assertion is echoed by other
scholars, such as Brennen and Resnick (2012), who argue that knowing about
concepts and processes of computer programming could help students develop
their CT skills or strategies. Furthermore, many researchers acknowledge that
students could enhance their computational skills by engaging in certain
activities, such as games, which require the use of some programming languages
(Lee et al., 2014). Hence, instructors need to include such activities in their
teaching strategies.

For the second theme (Theme 2), the findings showed that only three participants
had integrated metacognitive activities in their teaching practices before
following the intervention program. Revealingly, they indicated that they used
problem-based learning and collaborative learning in their teaching to help
improve students’ self-directed learning, enabling the latter to perform self-
monitoring and self-evaluation. By following the guidelines (that they had
learned in the intervention program), all the instructors stated that they integrated
relevant activities in their teaching practices, such as planning, scaffolding,
discussion, and evaluation, all of which are similar to the activities of problem-
solving technique. In particular, they emphasized the importance of scaffolding,
which is a critical component to support students who are struggling in the early
stage of learning (Feyzi-Behnagh et al., 2014).

Despite their claims of integrating metacognitive activities in their teaching,
anecdotal evidence showed that they did not perform self-monitoring and self-
evaluation activities to allow their students to reflect on the programming codes
and semantics they had written. Most preferably, they should have prompted
their students with some probing questions as follows: “How confident are you
that you have effectively solved the problem?” or “Is this the best solution?”. As
a whole, the above findings helped the researchers to answer the first research
question, namely “How would instructors and lecturers apply metacognitive and
problem-solving skills in the teaching computer programming environment to
improve students’ CT skills”.

The following discussions helped the researchers to answer the second research
question, namely “How would the techniques of metacognitive and problem-
solving be embedded in the learning of programming to improve students’ CT
skills?” and Table 4 shows the mapping of metacognitive and problem-solving
activities with the components or elements of CT skill.

102

http://ijlter.org/index.php/ijlter

Table 4: The mapping of metacognitive and problem-solving activities to CT

Techniques/

activities

Computational Thinking
Abstraction Decomposition Generalization Algorithm Evaluation

METACOGNITI
VE

1. Planning √ √

2. Monitoring √ √

3. Selecting √

4. Checking √

5. Evaluating √

6. Self-
monitoring Important for the development of students’ thinking skill and

social skill 7. Self-
evaluating

PROBLEM-
SOLVING

1. Understandin
g and
defining

√

2. Planning √ √

3. Designing √

4. Coding √ √ √

5. Testing √ √

1. Abstraction: As indicated in Table 4, only the first element of the problem-
solving technique, namely understanding and defining a problem, would
significantly contribute to the development of the first element of critical thinking
skill, namely abstraction. As such, students had to correctly identify and extract
relevant information to enable them to define the main idea of a given problem.
Such a process could certainly help enhance their abstraction skills (Shamir et al.,
2019). This assertion parallels that of Soumela and Stavros (2014), who argue that
abstraction is the method of making something straightforward from something
complex by leaving out the unnecessary information, identifying the necessary
patterns, and extracting concepts from concrete details.

2. Decomposition: As shown in Table 4, the planning and monitoring activities of
the metacognitive technique and the planning activity of the problem-solving
technique have a significant impact on the development of the decomposition
skill, which is the second element of CT skills. In particular, students could
perform the former activities by splitting a given problem into several manageable
sub-problems, which closely mirrors those activities carried out by the
decomposition process that breaks down a problem into smaller parts that are
easier to deal with Shamir et al. (2019). Hence, by performing planning and
monitoring activities of the metacognitive technique, students would be able to
enhance their decomposition skills. Likewise, the coding activity of the problem-
solving technique could wield a significant impact on the development of such a
skill, as coding is an activity in which students write codes using a programming

103

http://ijlter.org/index.php/ijlter

language, which entails them to divide a major programming routine into smaller
sub-routines.

3. Generalization: As illustrated in Table 4, the planning and monitoring
activities of the metacognitive technique would significantly contribute to the
development of generalization skills of CT. Through such activities, students must
rely on their prior knowledge in planning appropriate ways to solve a given
problem and to adapt or reuse original codes to solve the problem. Similarly, the
testing activities of the problem-solving technique could also contribute to the
development of students’ generalization skills, entailing them to run a program
repetitively by using numbers of different inputs to derive an optimal output or a
solution. In this respect, many researchers have emphasized the importance of
this technique, such as Soumela and Stavros (2014) and Xabier et al. (2018).
Therefore, students would be able to enhance their generalization skills by
performing the above activity.

4. Algorithm: Table 4 shows that selecting and checking activities of the
metacognitive technique and designing and coding activities of the problem-
solving technique would have a profound impact on the development of students’
algorithm skills of CT. In the selecting activity, students had to identify and select
the most efficient and effective method of solving a given problem. In the checking
and designing activities, they are required to carry out several activities as follows:
(i) writing appropriate algorithms based on the outcomes of the analysis and
planning activities, (ii) checking the algorithms that have been selected to ensure
solutions generated therefrom would be effective, and (iii) checking the programs
for syntax errors. As the algorithm skill of CT refers to the writing of step-by-step,
precise, and explicit commands for the method (Buitrago Flórez et al., 2017; Nor
Hasbiah & Jamilah, 2019), performing the above activities could effectively help
students to develop this important skill in learning programming.

5. Evaluation: Lastly, the evaluating activity of the metacognitive technique and
the coding and testing activities of the problem-solving technique would have a
significant influence on the development of students’ evaluation skills, which are
one of the important sub-skills of CT skill. According to Malaysia Digital Economy
Corporation (2018), evaluation is the process of ensuring that a solution is good
and suits a function, whether an algorithm, method, or process. Therefore, by
carrying out such activities, such as evaluating programming outputs based on
the readability and efficiency criteria, students could certainly develop their
evaluation skill, which is the last component of computational skill, which is
extremely important in helping students to develop efficient, effective programs.
Given such importance, it becomes imperative for instructors to prioritize such
activities in their teaching activities. As illustrated in Figure 1, some activities of
metacognitive and problem-solving techniques do overlap with one another.
Revealingly, none of the metacognitive activities has an impact on the
development of the abstraction skill. Nonetheless, such a skill could be developed
through the understanding and defining activities of the problem-solving
technique. Likewise, the coding activity of problem-solving technique could help
develop students’ decomposition, algorithm, and evaluation skills of CT.
Surprisingly, the self-monitoring and self-evaluating activities of the

104

http://ijlter.org/index.php/ijlter

metacognitive technique do not play a vital role in the development of any
component of the CT skill. Nevertheless, these two activities are critical to helping
students to develop strong self-management skills and social skills. As indicated,
the problem-solving technique does have some activities that could help students
develop those two skills. Admittedly, such overlapping gives rise to the need for
the integration of metacognitive and problem-solving techniques in a way that
they could effectively complement one another.

fFigure 1: A Vann’s diagram of activities of the metacognitive and problem-solving

techniques

Additionally, instructors could perform self-monitoring and self-evaluating
activities by prompting students to focus on their learning by making them
ponder some apt questions, such as “Have I made improvements in this area?”, “What
are my strengths?”, “Are there rooms for improvement?” and “As the whole, where do I
stand?” With such questions, students could self-reflect and assess their
understanding of the activities they had undertaken (Joseph et al., 2016; Nunaki
et al., 2019). Arguably, in such activities, they could evaluate their levels of CT
that they might have acquired (Buitrago Flórez et al., 2017; Filiz, 2016). Likewise,
they could also learn about their weaknesses (if any) and take appropriate
corrective measures. As discussed, it could be reasoned that using either the
metacognitive technique or the problem-solving technique alone would not be
sufficient to help students develop strong CT skills, as each technique has its
strengths and weaknesses. Therefore, it becomes imperative for instructors to
leverage the strengths of both techniques by integrating both of them in the
teaching and learning of programming courses.

6. Conclusion and future work
As acknowledged by most researchers and scholars, CT skill is one of the
competencies deemed critical in the learning environment of the 21st-century.

Teaching and Learning Techniques

 Metacognitive Problem-solving

 technique technique

 Planning/

 Monitoring

 Self-monitoring Designing/ Selecting/Checking Understanding

 and defining de

 Testing/Evaluating

 Self-evaluating

 Coding

105

http://ijlter.org/index.php/ijlter

Thus, efforts are needed to develop and strengthen this vital skill among students.
In this regard, computer programming courses could serve as a practical platform
to help students acquire such an important skill. As demonstrated in this study,
programming instructors could use problem-solving and metacognitive
techniques to help students develop their CT skills. However, the former lacks
self-monitoring and self-evaluating activities to improve students' self-
management and social skills. By contrast, the latter lacks activities that could help
students acquire strong abstraction skills. Given these drawbacks, both
techniques should be integrated into the teaching and learning of programming
courses rather than using either one of them in its entirety. Arguably, by
complementing the activities of both techniques, students could learn
programming more effectively such that they could acquire all the components of
the CT skills. Certainly, more studies are needed to focus on the impact of the
integration of problem-solving and metacognitive techniques on the development
of a strong CT skill among programming students. This study is a part of an
ongoing major study consisting of several phases. The ensuing part of the study
would focus on the development of a teaching and learning model that could
serve as a guideline to enhance students’ CT skills based on experts’ opinions.

7. Acknowledgment
The author wishes to extend her appreciation to the Ministry of Education of
Malaysia for the research grant [FRGS/1/2018/SS109/UPSI/02/29] which has
led to the funding of this research and to the UPSI Research Management and
Innovation Center for the assistance they have offered.

8. References
Abdullah, A. H., Rahman, S. N. S. A., & Hamzah, M. H. (2017). Metacognitive skills of

Malaysian students in non-routine mathematical problem solving. Bolema, Rio
Claro (SP), 31(57), 310 – 322.

Aizyl, A. (2016, August 11). PM: Schools lessons to integrate computational thinking from
next year. https://www.malaymail.com/news/malaysia/2016/08/11/schools-
to-integrate-computational-thinking-into-lessons-from-next-year-say/1181159

Barefootcas, Computational thinking. (2014). https://barefootcas.org.uk/barefoot-
primary-computing resources/concepts/computational-thinking/.

Bergin, S., Reilly, R., & Traynor, D. (2005). Examining the role of self-regulated learning
on introductory programming performance. In International Computing Education
Research (ICER). Proceedings of the International Computing Research Education
Workshop, (pp. 81-86). Seattle WA USA.
https://doi.org/10.1145/1089786.1089794

Brennen, K., & Resnick, M. (2012). New framework for studying and assessing the development
of computational thinking [Paper presentation at meeting]. American Educational
Research Association, Vancouver, BC, Canada.

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in
creating complex interventions in classroom settings. The Journal of the Learning
Sciences, 2(2), 141-178. https://doi.org/10.1207/s15327809jls0202_2

Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G.
(2017). Changing a generation’s way of thinking: Teaching computational
thinking through programming. Review of Educational Research, 87(4), 834-860.
https://doi.org/10.3102/0034654317710096

Denning, P. J. (2017). Remaining trouble spots with computational thinking.
Communications of the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438

https://barefootcas.org.uk/barefoot-primary-computing%20resources/concepts/computational-thinking/
https://barefootcas.org.uk/barefoot-primary-computing%20resources/concepts/computational-thinking/
file:///C:/Users/HP/Downloads/International%20Computing%20Research%20Education%20Workshop,%20(pp.%2081-86).%20Seattle%20WA%20USA
file:///C:/Users/HP/Downloads/International%20Computing%20Research%20Education%20Workshop,%20(pp.%2081-86).%20Seattle%20WA%20USA
https://doi.org/10.1145/1089786.1089794
https://doi.org/10.1207/s15327809jls0202_2
https://doi.org/10.3102/0034654317710096
https://doi.org/10.1145/2998438

106

http://ijlter.org/index.php/ijlter

Djambong, T., & Freiman, V. (2016). Task-based assessment of students’ computational
thinking skills developed through visual programming or tangible coding
environments. In International Association for Development of the Information Society.
Proceedings of the International Conference on Cognition and Exploratory
Learning in Digital Age (CELDA), (pp. 41-52). Mannheim, Germany.

Feyzi-Behnagh, R., Azevedo, R., Legowski, E., Reitmeyer, K., Tseytlin, E., & Crowley, R.
S. (2014). Metacognitive scaffolds improve self-judgments of accuracy in a medical
intelligent tutoring system. Instructional Science, 42(2), 159-181.
http://dx.doi.org/10.1007%2Fs11251-013-9275-4

Filiz, K., Yasemin, G., & Volkan, K. (2016). A Framework for computational thinking based
on a systematic research review. Baltic J. Modern Computing, 4(3), 583-596.

Francom, G. M. (2010). Teach me how to learn: Principles for fostering students’ self-
directed learning skills. International Journal of Self-Directed Learning, 7(1), 29-44.

Gaeta, M., Mangione, G. R., Orciuoli, F., & Saverio, S. (2014). Metacognitive learning
environment: a semantic perspective. Journal of e-Learning and Knowledge Society,
7(2), 69-80. http://dx.doi.org/10.20368/1971-8829/522

Gill, T. G. (2011). Informing with the case method: A Guide to case method research, writing, and
facilitation. Informing Science Press.

Halpern, D. F. (1999). Teaching for critical thinking: Helping college students develop the
skills and dispositions of a critical thinker. New Directions for Teaching and Learning,
1999(80), 69-74. https://doi.org/10.1002/tl.8005

Havenga, M. (2015). The role of metacognitive skills in solving object-oriented
programming problems: A case study. TD the Journal for Transdisciplinary
Research in Southern Africa, 11(1), 133-147. http://dx.doi.org/10.4102/td.v11i1.36

Hinojosa, L. M. M., Rodriguez, M. C., & Paez, C. A. O. (2020). Measurement of
metacognition: Adaptation of metacognitive state inventory in Spanish to
Mexican University students. European Journal of Educational Research, 9(1), 413-
421. http://dx.doi.org/10.12973/eu-jer.9.1.413

Hooshyar, D., Ahmad, R. B., Yousefi, M., Yusop, F. D., & Horng, S. J. (2015). A flowchart-
based intelligent tutoring system for improving problem-solving skills of novice
programmers. Journal of Computer Assisted Learning, 1–7.
http://dx.doi.org/10.1111/jcal.12099

Joseph, L. M., Alber-Morgan, S., Cullen, J., & Rouse, C. (2016). The effects of self-
questioning on reading comprehension: A literature review. Reading & Writing
Quarterly, 32(2), 152 - 173. http://dx.doi.org/10.1080/10573569.2014.891449

Joseph, K. J. R. (2016, August 12). Computer science education to debut in schools next
year. https://www.thestar.com.my/news/nation/2016/08/12/grooming-
students-to-be-techsavvy-computer-science-education-to-debut-in-schools-next-
year/

Kafai, Y. B. (2016). From computational thinking to computational participation in K--12
education. Communications of the ACM, 26–27. https://doi.org/10.1145/2955114

Lee, I., Martin, F., & Apone, K. (2014). Integrating computational thinking across the K–8
curriculum. ACM Inroads, 5(4), 64-71. https://doi.org/10.1145/2684721.2684736

Malaysia Digital Economy Corporation [MDEC]. (2018). Computational Thinking and
Computer Science Teaching Certificate Programme for Educator. Ministry of
Education Malaysia.

Malik, S. I., & Coldwell-Neilson, J. (2017). Impact of a new teaching and learning approach
in an introductory programming course. Journal of Educational Computing Research,
1–31. http://dx.doi.org/10.1177/0735633116685852

Mannila, L., Dagiene, V., Demo, B., Grgurina, N., Mirolo, C., Rolandsson, L., & Settle, A.
(2014). Computational thinking in K-9 education. In Proceedings of the Working

http://dx.doi.org/10.1007%2Fs11251-013-9275-4
http://dx.doi.org/10.20368/1971-8829/522
https://doi.org/10.1002/tl.8005
http://dx.doi.org/10.4102/td.v11i1.36
http://dx.doi.org/10.12973/eu-jer.9.1.413
http://dx.doi.org/10.1111/jcal.12099
http://dx.doi.org/10.1080/10573569.2014.891449
https://www.thestar.com.my/news/nation/2016/08/12/grooming-students-to-be-techsavvy-computer-science-education-to-debut-in-schools-next-year/
https://www.thestar.com.my/news/nation/2016/08/12/grooming-students-to-be-techsavvy-computer-science-education-to-debut-in-schools-next-year/
https://www.thestar.com.my/news/nation/2016/08/12/grooming-students-to-be-techsavvy-computer-science-education-to-debut-in-schools-next-year/
https://doi.org/10.1145/2955114
https://doi.org/10.1145/2684721.2684736
http://dx.doi.org/10.1177/0735633116685852

107

http://ijlter.org/index.php/ijlter

Group Reports of 2014 on Innovation & Technology in Computer Science Education
Conference, ITiCSE-WGR (pp. 1-29). https://doi.org/10.1145/2713609.2713610

Margarida, R., Alexandre, L., & Benjamin, L. (2017). Computational thinking development
through creative programming in higher education. International Journal of
Educational Technology in Higher Education, 14, 42.
https://doi.org/10.1186/s41239-017-0080-z

Mayer, R. E. (2003). Learning and instruction. Prentice-Hall.

Ministry of Education Malaysia. (2012). Pelan pembangunan pendidikan Malaysia 2013-
2025 [Malaysia education development plan 2013-2025]. Ministry of Education
Malaysia.

Ministry of Education Malaysia. (2016). Kurikulum standard sekolah rendah KSSR.
Bahagian Pembangunan Kurikulum [KSSR primary school standard curriculum.
Curriculum Development Division]. Ministry of Education Malaysia.

Mohd Rum, S. N. (2015). A metacognitive support environment for novice programmer
using semantic web [Doctoral dissertation]. University of Malaya, Kuala Lumpur.

Nimmi, P. M., & Zakkariya, K. A. (2016). Developing metacognitive skills: A potential
intervention for employability enhancement. Journal of Contemporary Research in
Management, 11(3), 11-20.

Nunaki, J. H., Damopolii, I., Kandowangko, N. Y., & Nusantari, E. (2019). The
effectiveness of Inquiry-based learning to train the students’ metacognitive skills
based on gender differences. International Journal of Instruction, 12(2), 505–516.
https://doi.org/10.29333/iji.2019.12232a

Nurul Faeizah, H., Hairulliza, M. J., Siti Aishah, H., & Hazilah, M. A. (2020). Technology
integration to promote desire to learn programming in higher education.
International Journal on Advanced Science, Engineering, and Information Technology,
10(1), 253-259. http://dx.doi.org/10.18517/ijaseit.10.1.10264

Nor Hasbiah, U., & Jamilah, H. (2019). A Web-based Learning programming portal: Do
instructors need it to enhance novice students’ computational thinking skills?
International Journal of Innovative Technology and Exploring Engineering, 8(9), 1945-
1958.

Park, N. (2016). Development of computer education program using LOGO programming
and fractals learning for enhancing creativity: Focus on creative problem-solving.
International Journal of u- and e-Service, Science and Technology, 9(2), 121–126.
http://dx.doi.org/10.14257/ijunesst.2016.9.2.13

Paul, R., Fisher, A., & Nosich, G. (1993). Workshop on critical thinking strategies: Foundation
for Critical Thinking. Sonoma State University, CA.

Poli, R., & Koza, J. (2014). Genetic Programming. Springer.

Ramdiah, S., & Duran Corebima, A. (2014). Learning strategy equalizing students’
achievement, metacognitive, and critical thinking skills. American Journal of
Educational Research, 2(8) 577-584. http://dx.doi.org/10.12691/education-2-8-3

Román-González, M., Pérez-González, J. C., & Jiménez-Fernández, C. (2017). Which
cognitive abilities under-lie computational thinking? Criterion validity of the
computational thinking test. Computers in Human Behaviour, 72, 678-691.
https://doi.org/10.1016/j.chb.2016.08.047

Selby, C. C. (2015). Relationships: computational thinking, pedagogy of programming,
and bloom’s taxonomy. In Proceedings of the Workshop in Primary and Secondary
Computing Education, (pp. 80-87). https://doi.org/10.1145/2818314.2818315

Seong-Won, K., & Youngjun, L. (2020). An analysis of pre-service teachers' learning
process in programming learning. International Journal on Advanced Science,
Engineering, and Information Technology, 10(1), 58-69.
https://doi.org/10.18517/ijaseit.10.1.5723

https://doi.org/10.1145/2713609.2713610
https://doi.org/10.1186/s41239-017-0080-z
https://doi.org/10.29333/iji.2019.12232a
http://dx.doi.org/10.18517/ijaseit.10.1.10264
http://dx.doi.org/10.14257/ijunesst.2016.9.2.13
http://dx.doi.org/10.12691/education-2-8-3
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1145/2818314.2818315

108

http://ijlter.org/index.php/ijlter

Shamir, G., Tsybulsky, D., & Levin, L. (2019). Introducing computational thinking
practices in learning science of elementary school. In Proceedings of the Informing

Science and Information Technology Education Conference, (pp. 187-205). Jerusalem,

Israel. https://doi.org/10.28945/4327

Soumela, A., & Stavros, D. (2014). How to support students' computational thinking skills
in educational robotics activities. In Proceedings of 4th International Workshop
Teaching Robotics, Teaching with Robotics & 5th International Conference Robotics in
Education. Padova, Italy.

Sterberg, R. J., & Sternberg, K. (2012). Cognition (6th ed.). Cengage Learning.

Swaid, S. I. (2015). Science direct bringing computational thinking to STEM education.
Procedia Manufacturing, 3, 3657–3662.
https://doi.org/10.1016/j.promfg.2015.07.761

Ung, L. L., Tammie, C. S., Jane, L., & Norazila, A. A. (2017). Preliminary investigation:
Teachers’ perception on computational thinking concepts. Journal of
Telecommunication and Computer Engineering, 9, 2-9.

Uysal, M. P. (2014). Improving first computer programming experiences: The case of
adapting a web-supported and well-structured problem-solving method to a
traditional course. Contemporary Educational Technology, 5(3), 198-217.
https://doi.org/10.30935/cedtech/6125

Veenman, M. V. J., Van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition
and learning: Conceptual and methodological considerations. Metacognition
Learning, 1, 3-14.

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in
compulsory education: Towards an agenda for research and practice. Education
and Information Technologies, 20(4), 715–728. https://doi.org/10.1007/s10639-015-
9412-6

Wing, J. (2008). Computational thinking and thinking about computing. Philosophical
Transactions of the Royal Society, 3717–3725.
https://doi.org/10.1098/rsta.2008.0118

Xabier, B., Miguel, A. O., Juan, C. O., & Mauricio, J. R. (2018). Computational thinking in
pre-university blended learning classrooms. Computers in Human Behaviour, 80,
412-419. https://doi.org/10.1016/j.chb.2017.04.058

https://doi.org/10.28945/4327
https://doi.org/10.1016/j.promfg.2015.07.761
https://doi.org/10.30935/cedtech/6125
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1007/s10639-015-9412-6
https://doi.org/10.1098/rsta.2008.0118
https://doi.org/10.1016/j.chb.2017.04.058

