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Abstract. Globally, many educational institutions recognize the 
importance of computational thinking and have begun incorporating it 
into primary education. Educators cultivate students’ computational 
thinking skills through block-based programming; however, a lack of 
digital learning tools that offer real interaction may negatively impact 
students’ computational thinking learning performances. This study 
proposes a cost-effective, block-based, programmable computational 
thinking educational robot developed using the open-source Arduino 
platform, combined with Android application development. This robot is 
specifically designed for use in elementary computational thinking 
education. To assess the impact of the proposed approach on elementary 
students’ learning achievement, motivation, and attitudes towards 
computational thinking education, a quasi-experimental design with 
control and experimental groups was implemented in the computational 
thinking curriculum at an elementary school. The experiment was 
conducted over a period of three weeks and involved two classes of 
students and one teacher. The control group engaged in computational 
thinking learning activities using computers, while the experimental 
group completed computational thinking learning activities using the 
computational thinking educational robot and application developed in 
this study. Data were collected through prior knowledge tests of 
computational thinking, learning motivation and attitude questionnaires, 
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and computational thinking achievement tests completed by the students. 
The results indicate that the experimental group outperformed the 
control group in learning achievement, motivation, and attitudes, 
demonstrating that physical interaction in learning can effectively 
enhance learning performances. 

  
Keywords: computational thinking; educational robots; learning 
achievement; learning motivation; quality education 

 
 

1. Introduction 
In recent years, computational thinking (CT) has gained prominence across 
various disciplines. Globally, many educational institutions recognize the 
importance of CT and have begun incorporating it into primary education 
(Valentina et al., 2022). The aim of integrating CT at this level is to develop 
students’ logical thinking, systemic thinking, and problem-solving skills. 
According to Chao (2016), CT is promoted as a critical skill for addressing real-
world challenges  
 
To foster students’ CT skills, programming is commonly used by educators (Tikva 
& Tambouris, 2021). However, programming languages can be difficult and 
complex, particularly for younger students. Consequently, numerous visual 
programming tools, such as Scratch Code.org platform, Kodu and App Inventor, 
have been developed to assist in teaching and learning CT (Zhao et al., 2022). 
These tools simplify the programming process by using a matrix of programmable 
bricks, allowing students to focus on practical application without needing to 
master complex coding languages. Despite these tools, students may struggle to 
complete tasks if they lack sufficient CT skills and guidance (Jiang & Li, 2021). 
 
To address this issue, several applications (apps) have been designed to enhance 
students’ CT abilities, including Minecraft on the Code.org platform and Kodu. 
These apps use a digital game-based approach, guiding students through virtual 
roles and tasks using programmable brick matrices. However, literature indicates 
that purely digital learning games lack real-world interaction, which can 
negatively impact students’ CT learning outcomes (Barz et al., 2024).  
 
Students often find it challenging to learn programming in a programming 
development environment composed of abstract concepts. However, concretizing 
these concepts can increase their engagement and stimulate their learning 
motivation (Karaahmetoğlu & Korkmaz, 2019). Educational robots, through 
physical interaction, can effectively assist K-12 students in developing CT skills. 
Compared to purely digital programming, using physical robots in learning 
activities can enhance peer interaction. During these interactions, students 
actively participate in collaborative processes and willingly communicate 
programming decisions, fostering a positive learning environment. This suggests 
a gap in learning in which students lack physical contexts to apply their CT skills. 
In response to these challenges, some studies have implemented physical robots, 
such as Lego EV3 and mBot, in elementary education (Kalaitzidou & Pachidis, 
2023). The use of the Lego Mindstorms EV3 robot kit for programming instruction 



345 

 

http://ijlter.org/index.php/ijlter 

has significantly increased students’ positive attitudes toward programming 
(Yıldız & Seferoğlu, 2021). Additionally, studies have shown that educational 
robot technology is more effective in elementary schools than at other educational 
levels (Zhang et al., 2021). However, these robots are often expensive, have 
lengthy repair times, and their parts are not readily available, making them 
impractical for regular educational use. 
 
Considering these issues, this study proposes a cost-effective, block-based, 
programmable CT educational robot developed using the open-source Arduino 
platform combined with Android application development. This robot is 
specifically designed for use in elementary CT education, with the aim of 
enhancing students’ learning motivation, attitudes, and achievement through a 
hybrid of physical and digital educational robots. To evaluate the effectiveness of 
this approach, an experiment was conducted to address the following research 
questions: 

• Do students who learn about computational thinking with the hybrid 
physical and digital educational robot demonstrate better learning 
achievements compared to those learning through the pure digital 
learning approach? 

• Do students who learn about computational thinking with the hybrid 
physical and digital educational robot show higher learning motivation 
than those using the pure digital learning approach? 

• Do students who learn about computational thinking with the hybrid 
physical and digital educational robot exhibit a more positive learning 
attitude than those using the pure digital learning approach? 

 

2. Literature Review 
2.1 Computational Thinking 
The term CT was introduced by Jeannette M. Wing in March 2006 (Lodi & Martini, 
2021) and it involves the following four steps: problem decomposition, pattern 
recognition, abstraction, and algorithm design. Problem decomposition involves 
breaking down complex problems into smaller, more manageable parts. Pattern 
recognition entails observing and identifying similarities within these smaller 
problems and organizing them. Abstraction involves highlighting the important 
parts of these problems while ignoring the irrelevant details. Algorithm design 
refers to developing methods to solve problems (Kramer, 2007). Education in CT 
often relies on programming, as it directly trains the cognitive tasks needed for 
CT and serves as a medium to demonstrate CT skills (Wong & Cheung, 2020). 
Thus, teaching CT generally involves programming courses, allowing students to 
practice CT skills, such as abstraction, flow control, pattern recognition, and 
debugging, through coding. Many studies have explored how programming 
education can enhance students’ CT skills, focusing on guiding students to use CT 
to think and solve problems, rather than on the intricacies of programming itself 
(Fang et al., 2022). 
 
In this context, recent research has developed CT education strategies. In 2019, 
Samar and Taima designed a curriculum using Scratch and Java programming to 
integrate key CT concepts. Through guided tasks and a progressively challenging 



346 

 

http://ijlter.org/index.php/ijlter 

curriculum, students subtly learn the core concepts of CT. This approach 
emphasizes that regardless of the tools used, it is possible to teach students CT, 
allowing other educators to apply these principles in their teaching (Samar & 
Taima, 2019). This method lets students learn CT through programming, with the 
advantage that they can understand CT concepts during the programming 
process. However, a disadvantage is that students may not apply CT concepts to 
the everyday problems they encounter.  
 
Wong and Jiang (2018) observed the relationship between CT and programming 
in a course for upper elementary students. Their study showed that programming 
significantly enhanced students’ CT skills, especially in problem analysis (Wong 
& Jiang, 2018). This method assesses students’ achievement of CT skills at various 
stages of learning programming, with the advantage of precisely understanding 
which concepts students have mastered. However, the disadvantage is that 
students might only learn the same concepts repetitively without applying them 
to everyday situations. Sun and Liu (2023) enhanced students’ CT abilities 
through a 13-week game-based Python programming activity. They found that 
students might need time to adapt to Python programming initially but 
significant improvements were noted in their algorithmic and construction skills 
even without programming activities. 
 
However, programming languages often become a barrier to learning, especially 
for elementary students, significantly impacting their learning outcomes (Kite 
et al., 2021). Thus, elementary teachers often use block-based programming tools, 
such as Scratch and CodeMonkey, for instruction (Stewart & Baek, 2023). 
Although these tools lower the starting point for learning CT, studies have shown 
that students struggle with understanding the more abstract concepts in 
programming when using virtual tools (Çetin & Türkan, 2022). Further research 
has indicated that using physical teaching tools can effectively enhance learning 
outcomes when students are learning abstract concepts (Dağ et al., 2023). 
Consequently, numerous CT educational robots have been developed in recent 
years, allowing teachers and students to engage with robots through block-based 
programming tools, thereby facilitating the teaching of CT. The following sections 
introduce CT educational robots. 
 
2.2 Educational Robots for Computational Thinking 
In recent years, as technology has advanced, many manufacturers have begun 
producing robots for educational purposes. These robots, known as educational 
robots, are primarily used in classroom instruction, extracurricular clubs, robot 
camps, and competitions (Noh & Lee, 2020). Currently, there are many robots on 
the market designed for educational use such as LEGO EV3, Softbank Pepper, 
ASUS Zenbo, and Makeblock mBot. These robots are mainly used to cultivate 
students’ understanding of CT and their programming skills. 
 
Educational robots can provide practical and tangible learning experiences in 
teaching CT. Students translate abstract concepts into concrete actions and 
commands through programming, which helps them understand abstract 
concepts and logical thinking (Qu & Fok, 2022). Educational robots serve as 
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interactive tools; during the interaction between students and robots, students can 
pose various questions and challenges and try different solutions, thus 
stimulating their creativity and imagination and fostering their logical thinking 
and problem-solving abilities (Noh & Lee, 2020). Additionally, robots can provide 
immediate feedback and corrections. By observing the robots’ performance, 
students can promptly understand their mistakes and shortcomings, thereby 
adjusting and improving their solutions to enhance their problem-solving skills. 
Ou Yang et al. (2023) summarized the advantages of educational robots in 
teaching CT, including fostering higher-order thinking skills, enhancing CT skills, 
boosting creativity and problem-solving abilities, and increasing student 
engagement and interest. 
 
Educational robots are increasingly used as tools to attract students to learn 
computer programming. When integrated with CT, they can help develop higher-
order thinking skills (Jawawi et al., 2022). Shen et al. (2022) designed an 
educational robot curriculum for fifth-grade elementary students to participate in 
problem-solving algorithm design. Through experimental research, it was found 
that students’ CT abilities in programming significantly improved, and it also 
aided their reasoning abilities in everyday life (Shen et al., 2022). Educational 
robots use a visual programming environment, allowing students to write 
programs in a relatively simple and fun way, which can effectively enhance their 
learning motivation and outcomes and promote the development of their CT skills 
(Chevalier et al., 2020). Concretizing abstract concepts can increase student 
engagement and stimulate their learning motivation (Karaahmetoğlu et al., 2019). 
Cervera et al. (2020) used educational robots in hands-on experimental classes for 
second to fourth graders. The study indicated that guiding students in using 
educational robots helped them understand programming logic and CT skills and 
promoted cooperation among peers. 
 
Educational robots are well-suited for cultivating students’ CT skills (Ching & 
Hsu, 2024). Students actively use body language, such as gestures, movements, 
and facial expressions, to reason, communicate their predictions, mimic robot 
actions, or make transitions between abstract and concrete concepts (Hsu et al., 
2018). This is a form of embodied cognition. Embodied cognition is a cognitive 
theory that suggests most cognitive processes, whether in humans or other 
organisms, are shaped by sensory experiences involving the whole body. This 
concept extends to embodied learning, which is based on the idea that students’ 
cognitive experiences, perceptions, and knowledge are formed through activities 
involving their bodies in relation to their environment (Kopcha et al., 2021). 
Embodied learning activities help reduce the cognitive load on students when 
transitioning between programming and representations during robot tasks 
(Moore et al., 2020), further promoting the acquisition of abstract conceptual 
knowledge. Ching and Hsu (2024) encourage future research to explore the 
effective design and integration of embodied learning activities to support and 
enhance the development of CT through educational robot technology. 
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However, the educational robots currently available on the market are relatively 
expensive due to their programmable capabilities, making it difficult to make 
them widely available in elementary education so that every student can use 
them. Therefore, this study proposes the development of an affordable block-
based programmable CT educational robot using the open-source Arduino 
platform combined with Android app development. This robot is applied in 
elementary CT education to enhance student learning performances. By using an 
application to control the physical educational robot, students can understand 
how virtual code drives the physical robot and completes learning tasks. 
 

3. Computational Thinking Educational Robot 
The CT educational robot developed in this study consists of three main 
components, namely an Arduino-based educational robot, an Android-based CT 
application, and a paper-based task map. The educational robot is equipped with 
Bluetooth wireless communication components that transmit and receive 
messages to and from the Android-based CT application. The Android-based 
application includes modules for connection, programming blocks, and task 
management, allowing students to assemble programming blocks, which are then 
converted into commands that control the robot’s motors for movement. The 
robot is also equipped with a color sensor at the bottom, which identifies its 
position on the task map and sends this information back to the Arduino 
microcontroller. The Arduino then communicates this data to the Android 
application, verifying whether the robot has correctly stopped at the designated 
spot on the map and providing feedback to the operator. The system architecture 
is illustrated in Figure 1. 

 

 
Figure 1: Computational thinking educational robot structure 
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The designed educational robot is a car-type robot equipped with two wheels, 
allowing easy movement. It is controlled by an L298N DC motor driver module, 
which enables precise positioning on the designated spots on the task map. A 
TCS3200 color sensor on the bottom of the robot identifies whether its position on 
the task map meets the requirements of the problem. The robot is equipped with 
Bluetooth wireless communication components to transmit and receive messages 
from smart devices, controlled by the CT application to move the robot. The 
physical model of the CT educational robot developed in this study is shown in 
Figure 2. 
 

 

Figure 2: Computational thinking educational robot 

 
The CT application developed in this study includes a programming block 
module and a task module. The task module provides problems that students 
solve using the block module. The problems in the task module are designed 
based on the Minecraft Adventurer challenges from the Hour of Code event on 
the Code.org website. Five problems are designed, ranging from basic linear tasks 
to complex looping tasks. Table 1 presents a comparison between Minecraft 
Adventurer and the problems designed in this study. The programming block 
module includes five types of programming functions: forward, backward, left 
turn, right turn, and loop. Students use these programming blocks to control the 
educational robot to move and meet the requirements of the task module. The CT 
app developed in this study is shown in Figure 3. The task map designed in this 
study provides an environment for the educational robot to navigate. It includes 
a black block at one location, and students must use hints from the task module 
and manipulate the programming block module to guide the educational robot to 
the correct position. The task map is shown in Figure 4. 
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Table 1: Comparison of Minecraft Adventurer and computational thinking 
educational robot tasks 

Minecraft Adventurer Computational Thinking Educational Robot 

Task 1: Add a second “move forward” command 
to reach the position of the sheep. 

Task 1: Add three “forward” blocks to move the 
car to the black area. 

     
Task 2: Time to shear the sheep! Use the “shear” 

command to collect wool from the sheep. 
Task 2: Add a “forward” block and a “turn” block 

to move the car to the black area. 

     
Task 3: We need to finish building the house 

before the sun sets, and it requires a lot of wood. 
Please cut down all three trees. 

Task 3: Add forward blocks and a turn block to 
move the car to the black area. 

     
Task 4: Place “place” and “move forward” 

commands inside a repeat loop to start building 
the first part of the house. 

Task 4: Add a “forward” block and a “loop” block 
to move the car to the black area. 

     

Task 5: Build the rest of the house using any 
materials you like. The repeat loop command will 

come in handy. 

Task 5: Add a “forward” block, a “turn” block, 
and a “loop” block to move the car to the black 

area. 
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Figure 3: Screenshot of the computational thinking app 
 

 

Figure 4: Complete set of the computational thinking educational robot accessories 
 

4. Research Methodology 
4.1 Research Design 
To evaluate the effect of the CT educational robot developed in this study on 
elementary students’ learning achievement, motivation, and attitudes towards CT 
education, a quasi-experimental design was utilized, specifically adopting a non-
equivalent control group design. This sub-type of quasi-experimental design 
involves the use of both control and experimental groups but does not require 
random assignment, allowing for comparisons between groups that are naturally 
occurring or pre-existing in the educational setting. The sample was selected 
using convenience sampling, in which the subjects easily accessible to the 
researchers were chosen. The advantage of convenience sampling is that it allows 
for easy access to samples and is relatively low in cost (Mweshi & Sakyi, 2020).  
 
The study was conducted over a period of three weeks, with three sessions (120 
minutes each), involving 44 students (25 boys and 19 girls) with an average age of 
9.7 years. The experimental group, consisting of 22 students, used the CT 
educational robot developed in this study, while the control group of 22 students 
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engaged in CT learning activities using Minecraft Adventurer on Code.org. Both 
groups were taught by the same teacher to ensure consistency in instruction. 
 
4.2 Research Tools 
To evaluate learning performances, data were collected and analyzed using a 
prior knowledge test for CT knowledge, a CT achievement test, a learning 
motivation questionnaire, and a learning attitude questionnaire. All 
questionnaires and tests consisted of closed-ended items. The pre-test was 
designed to evaluate students’ knowledge level and perceptions with regard to 
CT before participating in the experiment, while the post-test was designed to 
evaluate their learning outcomes and perceptions with regard to CT after the 
instructional intervention. 
 
Both the prior knowledge test and the learning achievement test used question 
items from the Bebras International Computational Thinking Challenge (Dagiene 
& Dolgopolovas, 2022), comprising five questions with a total score of 100 points. 
The learning achievement test consisted of five practical tasks, with a maximum 
score of 100 points. Both the prior knowledge test and learning achievement test 
were evaluated by three experts: two elementary school computer science 
teachers with over 10 years of experience and one professor with over 10 years of 
experience in computer science education, ensuring expert validity. The learning 
motivation questionnaire was based on the intrinsic motivation dimension of the 
Motivated Strategies for Learning Questionnaire (MSLQ) (Pintrich & de Groot, 
1990), measuring students’ perceived importance and interest in the course’s 
educational activities. This questionnaire contained nine items using a 7-point 
Likert scale and has been widely used in numerous studies (Wei et al., 2016). The 
reliability (Cronbach’s alpha) of the learning motivation questionnaire in this 
study was 0.933. Cronbach’s alpha is a commonly used measure of test reliability 
and a method to assess internal consistency (Tavakol & Dennick, 2011). Higher 
internal consistency reliability indicates that the items effectively measure the 
same construct. The learning attitude questionnaire was based on the scale 
developed by Hwang and Chang (2011), assessing students’ attitudes towards 
learning. It consisted of seven items on a 5-point Likert scale, also widely used in 
research (Lin, 2016, 2023), with a reliability (Cronbach’s alpha) of 0.933 in this 
study. 
 
4.3 Experimental Procedure 
The experiment was conducted in a regular elementary school computer 
classroom over three weeks, with each session being 40 minutes per week. In the 
first week, the teacher explained the learning content and procedure to the 
students participating in the experiment. Then, 10 minutes were spent explaining 
the learning activities, followed by 20 minutes to complete the CT prior 
knowledge test, and the final 10 minutes for filling out the learning motivation 
and learning attitude questionnaires. In the second week, the experimental group 
operated the CT educational robot developed in this study, while the control 
group used Minecraft Adventurer on code.org for their CT learning, while the 
teacher presented to assist both groups. The CT learning activities required both 
groups to use their respective learning tools to manipulate programming blocks 
to complete learning tasks. There were five tasks in total, ranging from basic linear 
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tasks to complex loop tasks. The experimental group had to use programming 
blocks to control the CT robot to move and complete the task requirements. In the 
third week, both groups took the CT achievement test and again filled out the 
learning motivation and learning attitude questionnaires. The experimental 
procedure is shown in Figure 5. 
 

 
Figure 5: Experimental procedure 

 
4.4 Data Collection and Analysis 
The data collected in this study included pre-tests and post-tests of the CT prior 
knowledge test, the learning motivation and attitude questionnaires, and the CT 
achievement test. After organizing and cataloging the collected questionnaires 
and test data, statistical analysis was performed using statistical software. The 
data analysis techniques included descriptive statistics, ANCOVA, and 
independent sample t-tests to address the research questions and achieve the 
study’s objectives. 
 

5. Results 
Based on the data collected from the quasi-experimental design described 
previously, the results of this study were analyzed and discussed from three 
aspects: student learning achievement, learning motivation, and learning 
attitudes. 
 
5.1 Analysis of Computational Thinking Learning Achievement 
To assess if there were any initial differences in CT prior knowledge between the 
experimental and control groups, an independent sample t-test was conducted on 
the pre-test scores of both groups. According to Table 2, the experimental group 
had an average score of 30.00, while the control group scored an average of 32.73. 
The variance Levene test showed no significant difference (F = 1.196, p = 0.280 > 
0.05), suggesting equal variances between the groups. The t-test did not show 
significant differences (t = -0.449, p = 0.656 > 0.05), indicating no significant pre-
test score differences between the groups. 
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Table 2: The independent sample t-test result of the prior knowledge for the two groups 

Group N Mean SD 
Levene’s test t-test 

F p t p 

Experimental group 22 30.00 17.18 
1.196 0.280 -0.449 0.656 

Control group 22 32.73 22.72 

 
To evaluate the impact of the strategies proposed in this study on students’ CT, a 
one-way ANCOVA was used to analyze the results of the learning achievement 
test, controlling for the effect of prior knowledge. Learning achievement test 
scores were set as the dependent variable, and prior knowledge test results as the 
covariate. Table 3 shows the one-way ANCOVA results for learning achievement 
scores between the groups, with the experimental group averaging 36.36, with a 
standard deviation of 21.94, and the control group averaging 24.55, with a 
standard deviation of 24.64. The analysis indicated significant differences between 
the groups (F(1, 41) = 4.264, p = 0.045 < 0.05), with the experimental group 
outperforming the control group. This result demonstrates that students using the 
CT educational robot developed in this study achieved better outcomes than those 
using Minecraft Adventurer on Code.org. 
 

Table 3: The ANCOVA result of the learning achievement for the two groups 

Group N Mean SD F p 

Experimental group 22 36.36 21.94 
4.264 0.045* 

Control group 22 24.55 24.64 

*p < 0.05 

 
5.2 Analysis of Learning Motivation 
To understand any pre-experimental differences in learning motivation between 
the groups, an independent sample t-test was conducted on the pre-test scores. 
According to Table 4, the experimental group had an average score of 5.31, and 
the control group 5.64. The variance Levene test showed no significant difference 
(F = 0.049, p = 0.826 > 0.05), suggesting equal variances between the groups. The 
t-test showed no significant differences (t = -1.128, p = 0.266 > 0.05), indicating no 
significant pre-experimental differences in learning motivation. 
 

Table 4: The independent sample t-test result of the learning motivation for the two 
groups 

Group N Mean SD 
Levene’s test t-test 

F p t p 

Experimental group 22 5.31 1.001 
0.049 0.826 -1.128 0.266 

Control group 22 5.64 0.928 

 
A one-way ANCOVA was performed on the post-test learning motivation scores 
to understand the impact of the different learning methods on students’ 
motivation. As shown in Table 5, learning motivation post-test scores were set as 
the dependent variable, with pre-test scores as the covariate. The experimental 
group averaged 5.68 with a standard deviation of 1.03, while the control group 
averaged 5.39 with a standard deviation of 1.09. The analysis showed significant 
differences between the groups (F = 4.263, p = 0.045 < 0.05), with the experimental 
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group scoring higher, indicating a positive impact on learning motivation from 
using the CT educational robot compared to the software-based learning. 
 

Table 5: The ANCOVA result of the learning motivation for the two groups 

Group N Mean SD F p 

Experimental group 22 5.68 1.03 
4.263 0.045* 

Control group 22 5.39 1.09 

*p < 0.05 

 
5.3 Analysis of Learning Attitudes 
To determine any pre-experimental differences in learning attitudes, an 
independent sample t-test was conducted on the pre-test scores. From Table 6, the 
experimental group averaged 3.80, and the control group 3.86. The variance 
Levene test showed no significant differences (F =1.851, p = 0.181 > 0.05), 
suggesting equal variances. The t-test showed no significant differences (t = -0.345, 
p = 0.732 > 0.05), indicating no significant pre-experimental differences in learning 
attitudes. 
 

Table 6: The independent sample t-test result of the learning attitude for the two 
groups 

Group N Mean SD 
Levene’s test t-test 

F p t p 

Experimental group 22 3.80 0.54 
1.851 0.181 -0.345 0.732 

Control group 22 3.86 0.70 

 
A one-way ANCOVA was then conducted on the post-test learning attitudes 
scores to understand if the different learning methods impacted students’ 
attitudes significantly. As shown in Table 7, learning attitudes post-test scores 
were set as the dependent variable, with pre-test scores as the covariate. The 
experimental group averaged 3.98 with a standard deviation of 0.59, and the 
control group 3.70 with a standard deviation of 0.67. The results showed 
significant differences (F = 5.043, p = 0.025 < 0.05), with the experimental group 
scoring higher, indicating that the CT educational robot positively influenced 
students’ learning attitudes compared to the software-based learning method. 
 

Table 7: The ANCOVA result of the learning attitude for the two groups 

Group N Mean SD F p 

Experimental group 22 3.98 0.59 
5.403 0.025* 

Control group 22 3.70 0.67 

*p < 0.05 

 

6. Discussion  
Using the CT educational robot and application developed in this study, the 
experimental group showed significant improvement in learning achievement, 
motivation, and attitude. These findings concur those of Zhang et al. (2021), who 
noted that interaction with physical objects during learning can significantly 
enhance students’ learning effectiveness and motivation. Similarly, a study by 
Chiazzese et al. (2019) highlighted that using educational robots can promote the 
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early development of CT, enabling students to apply learned concepts to solve 
real-life problems. This aligns with John Dewey’s advocacy for “Learning by 
doing”, which emphasizes experiential learning through context, reflection, 
learning, and knowledge, encouraging students to immerse themselves, explore, 
and discover the relationships among various elements within a context, leading 
to deeper understanding and insights. Additionally, the active engagement and 
continuous attempts during operation allow students to discover connections and 
achieve learning objectives (Amri et al., 2022). 
 
The results of this study indicate that the control group students’ post-test scores 
in learning motivation, effectiveness, and attitudes were lower than their pre-test 
scores. The control group used a digital game-based approach with a web 
application for CT learning activities. This might be related to findings by Li and 
Lee (2024), who discovered that students’ learning motivation varies with their 
experiences using computers. Another possible explanation by Lai et al. (2023) 
suggests that while computer software can assist in learning, the key to enhancing 
motivation and outcomes is appropriate guidance from educators, ensuring 
meaningful interactions that can significantly improve learning effectiveness, 
motivation, and attitudes (Alam, 2022; Dita et al., 2021). Furthermore, Yu et al. 
(2021) analyzed that learning motivation has a direct correlation with learning 
outcomes, showing that both positive and negative impacts can arise from 
changes in learning motivation. 
 

7. Conclusion 
In summary, this study developed an educational robot to engage students in 
learning CT. The results of this study indicate that students who used the CT 
educational robot developed in this study achieved better learning achievements, 
motivation, and attitudes in elementary school education. Controlling the 
physical educational robot through an application helps students concretize 
abstract concepts, understand the relationship between code and the robot’s 
movement, and further acquire abstract conceptual knowledge. Additionally, the 
self-assembled CT educational robot developed in this study was more cost-
effective than commercially available educational robots.  
 
However, the limitations encountered included insufficient experimental 
duration and a lack of diverse operational tasks. The curriculum design did not 
fully match the students’ cognitive development, suggesting a need for 
continuous content updates and extended time with the CT educational robot. 
The intervention experiment in this study was conducted over a period of only 
three weeks, approximately 120 minutes in total, which may be insufficient. 
Future studies are recommended to extend the experimental period to 16 to 20 
weeks to cover all three stages. Additionally, future plans should include different 
grade levels and design curricula that match students’ cognitive abilities, as 
students’ cognitive load directly affects their learning performance (Munandar 
et al., 2022; Zhampeissova et al., 2020).  
 
It is hoped that further research can collect more samples for analysis and provide 
a multifaceted analysis of various student behaviors, such as high and low 
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motivation and achievements, to explore the effect of the proposed approach on 
different types of students. Post-experiment analysis of various student aspects, 
such as those with high or low motivation and learning achievements, is also 
being planned. 
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