Fostering Scientific Creativity in the Classroom: The Concept of Flex-Based Learning

Kurt Haim, Wolfgang Aschauer

Abstract


To sustainably shape tomorrow’s world, young people must be prepared to develop successful solution strategies for problems that are as yet unknown. Therefore, it must be a core task of schools to train students in their problem-solving skills. The natural science subjects could become established to address this challenge if scientific creativity is explicitly promoted in the classroom. Therefore, the goal of a team of researchers and teachers was to develop a support program for scientific creativity. The developed program is summarized under the term Flex-Based Learning and includes a wide range of interventions linked to the most significant aspects of scientific creativity. The interventions have been developed and investigated since 2010 within a long-term design-based research project. The empirical inquiry, both in laboratory and real classroom settings, in which a total of 104 teachers and 3,516 Austrian secondary school students (aged 10–18 years) participated, indicates that Flex-Based Learning is efficient at the student level and is considered by teachers to be practical. In addition, the research also provided deeper insights into the conditions for fostering scientific creativity and the relationship between theory and practice.

https://doi.org/10.26803/ijlter.21.3.11


Keywords


scientific creativity; divergent thinking; bisociation; metacognition; design-based research

Full Text:

PDF

References


Agnoli, S., Corazza, G. E., & Runco, M. A. (2016). Estimating Creativity with a Multiple-Measurement Approach Within Scientific and Artistic Domains. Creativity Research Journal, 28(2), 171–176. https://doi.org/10.1080/10400419.2016.1162475

Aktamis, H., & Ergin, Ö. (2008). The effect of scientific process skills education on students’scientific creativity, science attitudes and academic achievements. Asia-Pacific Forum on Science Learning and Teaching, 9(1). https://www.eduhk.hk/apfslt/

Anderson, J. R. (2005). Cognitive Psychology and Its Implications (7th ed.). Worth Publishers.

Arnold, M., & Millar, R. (1996). Learning the scientific “story”: A case study in the teaching and learning of elementary thermodynamics. Science Education, 80(3), 249–281. https://doi.org/10.1002/(sici)1098-237x(199606)80:3<249::aid-sce1>3.0.co;2-e

Aschauer, W., Haim, K., & Weber, C. (2021). A Contribution to Scientific Creativity: A Validation Study Measuring Divergent Problem Solving Ability. Creativity Research Journal, 1–18. https://doi.org/10.1080/10400419.2021.1968656

Ashmann, S. (2009). The pennies-as-electrons analogy. Science and Children, 47(4), 24. https://my.nsta.org/resource/8334/the-pennies-as-electrons-analogy

Autor, D. H., Levy, F., & Murnane, R. J. (2003). The Skill Content of Recent Technological Change: An Empirical Exploration. The Quarterly Journal of Economics, 118(4), 1279–1333. https://doi.org/10.1162/003355303322552801

Ayas, M. B., & Sak, U. (2014). Objective measure of scientific creativity: Psychometric validity of the Creative Scientific Ability Test. Thinking Skills and Creativity, 13, 195–205. https://doi.org/10.1016/j.tsc.2014.06.001

Ayverdi, L.e., & Aydin, S. Ö. (2018). The effect of activities on the subject of genetics, prepared to develop scientific creativity, on scientific creativity and academic achievement. In R. Efe, I. Koleva, & E. Atasoy (Eds.), Recent Researches in Education (pp. 127–146). Cambridge Scholars Publishing. https://www.cambridgescholars.com/product/978-1-5275-1303-7

Barab, S., & Squire, K. (2004). Design-Based Research: Putting a Stake in the Ground. The Journal of the Learning Sciences, 13(1), 1–14. https://doi.org/10.1207/s15327809jls1301_1

Barbot, B., Besançon, M., & Lubart, T. (2016). The generality-specificity of creativity: Exploring the structure of creative potential with EPoC. Learning and Individual Differences, 52, 178–187. https://doi.org/10.1016/j.lindif.2016.06.005

Barrett, J. D., Vessey, W. B., Griffith, J. A., Mracek, D., & Mumford, M. D. (2014). Predicting Scientific Creativity: The Role of Adversity, Collaborations, and Work Strategies. Creativity Research Journal, 26(1), 39–52. https://doi.org/10.1080/10400419.2014.873660

Barron, F. (1955). The disposition toward originality. The Journal of Abnormal and Social Psychology, 51(3), 478–485. https://doi.org/10.1037/h0048073

Barron, F. (1995). No rootless flower: An ecology of creativity. Hampton Press.

Benedek, M., & Fink, A. (2019). Toward a neurocognitive framework of creative cognition: the role of memory, attention, and cognitive control. Current Opinion in Behavioral Sciences, 27, 116–122. https://doi.org/10.1016/j.cobeha.2018.11.002

Benedek, M., Jurisch, J., Koschutnig, K., Fink, A., & Beaty, R. E. (2020). Elements of creative thought: Investigating the cognitive and neural correlates of association and bi-association processes. NeuroImage, 210, 116586. https://doi.org/10.1016/j.neuroimage.2020.116586

Bi, H., Mi, S., Lu, S., & Hu, X. (2020). Meta-analysis of interventions and their effectiveness in students’ scientific creativity. Thinking Skills and Creativity, 38, 100750. https://doi.org/10.1016/j.tsc.2020.100750

Cobb, P., Confrey, J., DiSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13. https://doi.org/10.3102/0013189X032001009

Condell, J., Wade, J., Galway, L., McBride, M., Gormley, P., Brennan, J., & Somasundram, T. (2010). Problem solving techniques in cognitive science. Artificial Intelligence Review, 34(3), 221–234. https://doi.org/10.1007/s10462-010-9171-0

Cropley, A. (2006). In Praise of Convergent Thinking. Creativity Research Journal, 18(3), 391–404. https://doi.org/10.1207/s15326934crj1803_13

Csikszentmihalyi, M. (1997). Creativity: Flow and the psychology of discovery and invention. Harper Perennial.

DeHaan, R. L. (2009). Teaching creativity and inventive problem solving in science. CBE Life Sciences Education, 8(3), 172–181. https://doi.org/10.1187/cbe.08-12-0081

Design-Based Research Collective (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5–8. https://doi.org/10.3102/0013189X032001005

Dikici, A., Özdemir, G., & Clark, D. B. (2020). The Relationship Between Demographic Variables and Scientific Creativity: Mediating and Moderating Roles of Scientific Process Skills. Research in Science Education, 50(5), 2055–2079. https://doi.org/10.1007/s11165-018-9763-2

Dörner, D., & Funke, J. (2017). Complex Problem Solving: What It Is and What It Is Not. Frontiers in Psychology, 8(1153). https://doi.org/10.3389/fpsyg.2017.01153

Dunbar, K. (1994). How Scientists Really Reason: Scientific Reasoning In Real-World Laboratories. In R. J. Sternberg & J. E. Davidson (Eds.), The nature of insight (pp. 365–395). MIT Press. https://doi.org/10.7551/mitpress/4879.003.0017

Dunbar, K. (1999). Science. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of Creativity Vol. 2 (pp. 525–531). Academic Press.

Duncker, K. (1945). On problem-solving. Psychological Monographs, 58(5), i-113. https://doi.org/10.1037/h0093599

Dweck, C. (1999). Self-theories: Their Role in Motivation, Personality, and Development. Psychology Press. https://doi.org/10.4324/9781315783048

Dweck, C. (2015). Carol Dweck revisits the growth mindset. Education Week, 35(5), 20–24. https://portal.cornerstonesd.ca/group/yyd5jtk/documents/carol%20dweck%20growth%20mindsets.pdf

Feist, G. J. (1998). A meta-analysis of personality in scientific and artistic creativity. Personality and Social Psychology Review, 2(4), 290–309. https://doi.org/10.1207/s15327957pspr0204_5

Feist, G. J. (2010). The Function of Personality in Creativity: The Nature and Nurture of the Creative Personality. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge Handbook of Creativity (pp. 113–130). Cambridge university press. https://doi.org/10.1017/CBO9780511763205

Feist, G. J. (2011). Creativity in Science. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of creativity (2nd ed., Vol. 1, pp. 296–302). Academic Press/Elsevier.

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive–developmental inquiry. American Psychologist, 34(10), 906. https://doi.org/10.1037/0003-066X.34.10.906

Foreman, L., & Drummond, M. (2008). Rebel, rebel: James Dyson bucked the odds–Now his vacuum business is cleaning up. Inventor’s Digest, 24(6), 18–24.

Friege, G. (2001). Wissen und Problemlösen: eine empirische Untersuchung des wissenszentrierten Problemlösens im Gebiet der Elektrizitätslehre auf der Grundlage des Experten-Novizen-Vergleichs [Knowledge and problem solving: an empirical investigation of knowledge-centered problem solving in the field of electricity based on expert-novice comparison]. Logos-Verlag.

Ghassib, H. B. (2010). Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production? Gifted and Talented International, 25(1), 13–19. https://doi.org/10.1080/15332276.2010.11673540

Guilford, J. P. (1956). The structure of intellect. Psychological Bulletin, 53(4), 267–293. https://doi.org/10.1037/h0040755

Guilford, J. P. (1967). The nature of human intelligence. McGraw-Hill.

Guilford, J. P. (1968). Intelligence, creativity, and their educational implications. R. R. Knapp.

Hadzigeorgiou, Y., Fokialis, P., & Kabouropoulou, M. (2012). Thinking about Creativity in Science Education. Creative Education, 03(05), 603–611. https://doi.org/10.4236/ce.2012.35089

Haim, K., & Weber, C. (2014). KLEx – Eine Experimentiertechnik zur Förderung kreativer Problemlösekompetenz im naturwissenschaftlichen Unterricht [KLEx – An experimental technique to promote creative problem-solving skills in science teaching]. In E. Feyerer, K. Hirschenhauser, & K. Soukup-Altrichter (Eds.), Last oder Lust? Forschung und Lehrer/innenbildung [Burden or pleasure? Research and Teacher Education] (pp. 207–217). Waxmann.

Harré, R. (1972). The Philosophies of Science: An Introductory Survey. Oxford University Press.

Heller, K. A. (2007). Scientific ability and creativity. High Ability Studies, 18(2), 209–234. https://doi.org/10.1080/13598130701709541

Holton, G. J. (1998). The scientific imagination: with a new introduction. Harvard University Press.

Holyoak, K. J., & Thagard, P. (1996). Mental leaps: Analogy in creative thought. MIT Press. https://doi.org/10.22329/il.v18i2.2388

Hu, W., & Adey, P. (2002). A scientific creativity test for secondary school students. International Journal of Science Education, 24(4), 389–403. https://doi.org/10.1080/09500690110098912

Hu, W., Shi, Q. Z., Han, Q., Wang, X., & Adey, P. (2010). Creative Scientific Problem Finding and Its Developmental Trend. Creativity Research Journal, 22(1), 46–52. https://doi.org/10.1080/10400410903579551

Hu, W., Wu, B., Jia, X., Yi, X., Duan, C., Meyer, W., & Kaufman, J. C. (2013). Increasing Students’ Scientific Creativity: The “Learn to Think” Intervention Program. The Journal of Creative Behavior, 47(1), 3–21. https://doi.org/10.1002/jocb.20

Huang, C.-F., & Wang, K.-C. (2019). Comparative Analysis of Different Creativity Tests for the Prediction of Students’ Scientific Creativity. Creativity Research Journal, 31(4), 443–447. https://doi.org/10.1080/10400419.2019.1684116

Huang, P.-S., Peng, S.-L., Chen, H.-C., Tseng, L.-C., & Hsu, L.-C. (2017). The relative influences of domain knowledge and domain-general divergent thinking on scientific creativity and mathematical creativity. Thinking Skills and Creativity, 25, 1–9. https://doi.org/10.1016/j.tsc.2017.06.001

Kapur, M. (2008). Productive Failure. Cognition and Instruction, 26(3), 379–424. https://doi.org/10.1080/07370000802212669

Kaufman, J. C., & Beghetto, R. A. (2013). In Praise of Clark Kent: Creative Metacognition and the Importance of Teaching Kids When (Not) to Be Creative. Roeper Review, 35(3), 155–165. https://doi.org/10.1080/02783193.2013.799413

Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of Creativity Assessment. John Wiley & Sons, Inc.

Kind, P. M., & Kind, V. (2007). Creativity in Science Education: Perspectives and Challenges for Developing School Science. Studies in Science Education, 43(1), 1–37. https://doi.org/10.1080/03057260708560225

Kirkpatrick, D., & Kirkpatrick, J. (2006). Evaluating training programs: The four levels (Third Edition). Berrett-Koehler Publishers.

Klahr, D. (2002). Exploring science: The cognition and development of discovery process. MIT Press. https://doi.org/10.7551/mitpress/2939.001.0001

Klahr, D., & Dunbar, K. (1988). Dual Space Search During Scientific Reasoning. Cognitive Science, 12(1), 1–48. https://doi.org/10.1207/s15516709cog1201_1

Koestler, A. (1964). The Act of Creation. Hutchinson & Co.

Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of Creativity. In J. C. Kaufman & R. J. Sternberg (Eds.), The Cambridge Handbook of Creativity (pp. 20–47). Cambridge university press. https://doi.org/10.1017/CBO9780511763205

Lin, C., Hu, W., Adey, P., & Shen, J. (2003). The Influence of CASE on Scientific Creativity. Research in Science Education, 33(2), 143–162. https://doi.org/10.1023/A:1025078600616

Lyman, Frank T. JR. (1981). The Responsive Classroom Discussion: The Inclusion of All Students. In A. S. Anderson (Ed.), Mainstreaming Digest: A Collection of Faculty and Student Papers (pp. 109–113). University of Maryland.

Magno, C. (2009). Explaining the Creative Mind. The International Journal of Research and Review, 3, 10–19.

Marope, M., Griffin, P., & Gallagher, C. (2017). Future competences and the future of curriculum. http://www.ibe.unesco.org/en/news/document-future-competences-and-future-curriculum

McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60(1), 577–605. https://doi.org/10.1146/annurev.psych.60.110707.163612

Mednick, S. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220. https://doi.org/10.1037/h0048850

Miller, A. I. (2000). Metaphor And Scientific Creativity. In F. Hallyn (Ed.), Metaphor and analogy in the sciences (pp. 147–164). Springer. https://doi.org/10.1007/978-94-015-9442-4

Mukhopadhyay, R., & Sen, M. K. (2013). Scientific Creativity- A New Emerging Field of Research: Some Considerations. International Journal of Education and Psychological Research, 2(1), 1–9. https://ijepr.org/panel/assets/papers/ij1…pdf

Mumford, M. D., Connelly, M. S., Scott, G., Espejo, J., Sohl, L. M., Hunter, S. T., & Bedell, K. E. (2005). Career Experiences and Scientific Performance: A Study of Social, Physical, Life, and Health Sciences. Creativity Research Journal, 17(2-3), 105–129. https://doi.org/10.1080/10400419.2005.9651474

OECD. (2014). PISA 2012 Results: Creative Problem Solving: Students’ Skills in Tackling Real-Life Problems (Volume V), PISA, OECD Publishing. https://www.oecd.org/education/pisa-2012-results-volume-v.htm

Oyrer, S., Haim, K., & Aschauer, W. (2020). Effektive Lehrerfortbildung zur Vermittlung von flex-based learning [Effective teacher training to implement flex-based learning]. In S. Habig (Ed.), Naturwissenschaftliche Kompetenzen in der Gesellschaft von morgen [Scientific competencies in tomorrow's society] (pp. 605–608). Universität Duisburg-Essen. https://gdcp-ev.de/blog/2020/01/28/effektive-lehrerfortbildungzur-vermittlung-von-flex-based-learning/

Pelaprat, E., & Cole, M. (2011). “Minding the gap”: Imagination, creativity and human cognition. Integrative Psychological & Behavioral Science, 45(4), 397–418. https://doi.org/10.1007/s12124-011-9176-5

Prediger, S., Gravemeijer, K., & Confrey, J. (2015). Design research with a focus on learning processes: An overview on achievements and challenges. ZDM, 47(6), 877–891. https://doi.org/10.1007/s11858-015-0722-3

Rasul, M. S., Zahriman, N., Halim, L., & Rauf, R. A. (2018). Impact Of Integrated Stem Smart Communities Program On Students Scientific Creativity. Journal of Engineering Science and Technology, 13, 80–89. http://jestec.taylors.edu.my/i-Cite%202018/i-Cite_10.pdf

Rule, A. C., & Olsen, B. D. (2016). Use of analogy and comparative thinking in scientific creativity and gifted education. In M. K. Demetrikopoulos & J. L. Pecore (Eds.), Interplay of creativity and giftedness in science (pp. 299–320). Brill Sense. https://brill.com/view/book/edcoll/9789463001632/BP000018.xml

Runco, M. A. (1999). Divergent Thinking. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of Creativity Vol. 1 (Vol. 1, pp. 577–582). Academic Press.

Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55(1), 657–687. https://doi.org/10.1146/annurev.psych.55.090902.141502

Runco, M. A., & Acar, S. (2012). Divergent Thinking as an Indicator of Creative Potential. Creativity Research Journal, 24(1), 66–75. https://doi.org/10.1080/10400419.2012.652929

Runco, M. A., & Jaeger, G. J. (2012). The Standard Definition of Creativity. Creativity Research Journal, 24(1), 92–96. https://doi.org/10.1080/10400419.2012.650092

Sak, U., & Ayas, M. B. (2013). Creative Scientific Ability Test (C-SAT): A new measure of scientific creativity. Psychological Test and Assessment Modeling, 55(3), 316–329. https://www.psychologie-aktuell.com/fileadmin/download/ptam/3-2013_20130923/07_Sak.pdf

Schraw, G. (1998). Promoting general metacognitive awareness. Instructional Science, 26(1), 113–125. https://doi.org/10.1023/A:1003044231033

Schraw, G., Crippen, K. J., & Hartley, K. (2006). Promoting Self-Regulation in Science Education: Metacognition as Part of a Broader Perspective on Learning. Research in Science Education, 36(1), 111–139. https://doi.org/10.1007/s11165-005-3917-8

Siew, N. M., & Ambo, N. (2018). Development And Evaluation Of An Integrated Project-Based And Stem Teaching And Learning Module On Enhancing Scientific Creativity Among Fifth Graders. Journal of Baltic Science Education, 17(6), 1017–1033. https://doi.org/10.33225/jbse/18.17.1017

Siew, N. M., & Chin, M. K. (2018). Design, Development And Evaluation Of A Problembased With Cooperative Module On Scientific Creativity Of Preschoolers. Journal of Baltic Science Education, 17(2), 215–228. http://www.scientiasocialis.lt/jbse/files/pdf/vol17/215-228.Siew_JBSE_Vol.17_No.2.pdf

Siew, N. M., Chin, M. K., & Sombuling, A. (2017). The Effects Of Problem Based Learning With Cooperative Learning On Preschoolers’ Scientific Creativity. Journal of Baltic Science Education, 16(1), 100–112. http://www.scientiasocialis.lt/jbse/files/pdf/vol16/100-112.Siew_JBSE_Vol.16_No.1.pdf

Silva Pacheco, C., & Iturra Herrera, C. (2021). A conceptual proposal and operational definitions of the cognitive processes of complex thinking. Thinking Skills and Creativity, 39(2), 100794. https://doi.org/10.1016/j.tsc.2021.100794

Snyder, A., Mitchell, J., Bossomaier, T., & Pallier, G. (2004). The creativity quotient: An objective scoring of ideational fluency. Creativity Research Journal, 16(4), 415–419. https://doi.org/10.1080/10400410409534552

Smolucha, L., & Smolucha, F. C. (1986). LS Vygotsky´s Theory of Creative Imagination. Paper presented at 94th Annual Convention of the American psychological Association. https://eric.ed.gov/?id=ED274919

SonicRim, L. S. (2001). Collective creativity. Design, 6(3), 1–6. http://www.echo.iat.sfu.ca/library/sanders_01_collective_creativity.pdf

Stein, M. I. (1953). Creativity and culture. The Journal of Psychology, 36(2), 311–322. https://doi.org/10.1080/00223980.1953.9712897

Sternberg, R. J. (2010). Limits on Science: A Comment on “Where Does Creativity Fit into a Productivist Industrial Model of Knowledge Production?”. Gifted and Talented International, 25(1), 21–22. https://doi.org/10.1080/15332276.2010.11673541

Sternberg, R. J., Todhunter, R. J. E., Litvak, A., & Sternberg, K. (2020). The Relation of Scientific Creativity and Evaluation of Scientific Impact to Scientific Reasoning and General Intelligence. Journal of Intelligence, 8(2). https://doi.org/10.3390/jintelligence8020017

Taylor, M. (2011). Imagination. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of creativity (2nd ed., Vol. 1, 637-643). Academic Press/Elsevier.

Thurston, B. J., & Runco, M. A. (1999). Flexibilty. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of Creativity Vol. 1 (Vol. 1, pp. 729–732). Academic Press.

Torrance, E. P. (1966). The Torrance Tests of CreativeThinking - Norms - Technical Manual: Verbal Tests, Forms A and B: Figural Tests, forms A and B. Personal Press, Incorporated.

Torrance, E. P. (2008). The Torrance Tests of Creative Thinking Norms - Technical Manual Figural (Streamlined) Forms A & B. Scholastic Testing Service.

Treffinger, D. J., Isaksen, S. G., & Stead-Dorval, B. K. (2006). Creative problem solving: An introduction (4th ed.). Prufrock Press Inc.

van de Kamp, M.?T., Admiraal, W., van Drie, J., & Rijlaarsdam, G. (2015). Enhancing divergent thinking in visual arts education: Effects of explicit instruction of meta?cognition. British Journal of Educational Psychology, 85(1), 47–58. https://doi.org/10.1111/bjep.12061

Venville, G. J., & Treagust, D. F. (1996). The role of analogies in promoting conceptual change in biology. Instructional Science, 24(4), 295–320. https://doi.org/10.1007/BF00118053

Vygotsky, S. L. (2004). Imagination and Creativity in Childhood. Journal of Russian & East European Psychology, 42(1), 7–97. https://doi.org/10.1080/10610405.2004.11059210

Ward, T. B., Smith, S. M., & Vaid, J. (1997). Conceptual structures and processes in creative thought. In T. B. Ward, S. M. Smith, & J. Vaid (Eds.), Creative Thought: An investigation of conceptual structures and processes (pp. 1–27). American Psychological Association. https://doi.org/10.1037/10227-000

Weinert, F. E. (2001). Vergleichende Leistungsmessung in Schulen-eine umstrittene Selbstverständlichkeit [Comparative performance measurement in schools-a controversial matter of course]. In F. E. Weinert (Ed.), Leistungsmessungen in Schulen [Measuring performance in schools] (pp. 17–32). Beltz. http://hdl.handle.net/11858/00-001M-0000-0010-E7DD-1

Whitebread, D., Coltman, P., Pasternak, D. P., Sangster, C., Grau, V., Bingham, S., Almeqdad, Q., & Demetriou, D. (2009). The development of two observational tools for assessing metacognition and self-regulated learning in young children. Metacognition and Learning, 4(1), 63–85. https://doi.org/10.1007/s11409-008-9033-1

Yang, K.-K., Lee, L., Hong, Z.-R., & Lin, H.-s. (2016). Investigation of effective strategies for developing creative science thinking. International Journal of Science Education, 38(13), 2133–2151. https://doi.org/10.1080/09500693.2016.1230685

Zhu, W., Shang, S., Jiang, W., Pei, M., & Su, Y. (2019). Convergent Thinking Moderates the Relationship between Divergent Thinking and Scientific Creativity. Creativity Research Journal, 31(3), 320–328. https://doi.org/10.1080/10400419.2019.1641685


Refbacks

  • There are currently no refbacks.


e-ISSN: 1694-2116

p-ISSN: 1694-2493