The Use of Business Intelligence Tools to Analyze the Influence of Interactivity and Interaction Factors on the Assessment of Distance Students’ Performance in Virtual Learning Environments
Abstract
This paper aims to improve the practice of distance education, by providing managers with a view of aspects that influence the progression of students. To that end, it analyses “Interactivity and Interaction†factors in Virtual Learning Environments (VLE) communication systems, seeking to understand how these elements influence the performance of distance learning students at the beginner level. The study was carried out using data from a Brazilian distance learning private university, which utilizes a virtual learning environment. The research involved four steps: construction of a business intelligence environment, statistical analytical work, decision trees and clustering techniques to describe data, establish the most relevant variables and identify standards that may support the conclusion.Â
https://doi.org/10.26803/ijlter.17.9.6
Keywords
Full Text:
PDFReferences
Cheng, J. (2017). Data-Mining Research in Education [PDF]. Retrieved from https://arxiv.org/pdf/1703.10117.pdf
Cruz, M. A. S., Duarte, J. S., & Goldschmidt, R. R. (2017). Keystroke Dynamics Applied to Periodic Authentication in Virtual Learning Environments. Brazilian Journal of Computers in Education, 25, 36-60. doi: 10.5753/RBIE.2017.25.02.36.
Corsatea, B. M., & Walker, P. F. (2015). Opportunities for Moodle data and learning intelligence in virtual environments. Paper presented at the IEEE International Conference on Evolving and Adaptive Intelligent Systems (EAIS), Douai, France. Retrieved from https://www.semanticscholar.org/paper/Opportunities-for-Moodle-data-and-learning-in-Corsatea-Walker/b3d1105498bca47017dbcdc255700d8ce767742e
Ichihara, A. T., & Omar, N. (2017). Proposta de um ambiente para avaliação do sistema de comunicação de cursos EAD baseado em técnicas de business intelligence e em referenciais de qualidade do MEC/SEED [Proposal of an environment for evaluation of the EAD course communication system based on business intelligence techniques and the MEC/SEED quality referentials]. Minutes of the Ibero-American IADIS conferences 2017 and applied computing 2017, 5, 45-55. Vilamoura, Algarve, Portugal: IADIS.
Kimball, R., & Ross M. (2002). The Datawarehouse Toolkit: the complete guide to dimensional metodology. New York, USA: Wiley Compute Publishers.
Leskovec, J., Rajaraman, J., & Ullman, J. A. (2010). Mining of Massive Datasets (2nd ed.). Stanford University, CA: Cambridge University Press. doi.org/10.1017/CBO9781139924801
MEC/SEED - Ministério da Educação. Secretaria de Educação a Distância [Ministry of Education. Secretariat of Distance Education] (2007). Referenciais De Qualidade Para Educação Superior a Distância [Quality Referential in Distance Higher Education] [PDF]. Retrieved from http://portal.mec.gov.br/seed/arquivos/pdf/legislacao/refead1.pdf
Pascal, G., Servetto, D., Mirasson, L. U., & Luna, Y. (2017). Aplicación de Business Intelligence para la toma de decisiones en Instituciones Universitarias. Implementación de Boletines EstadÃsticos en la Universidad Nacional de Lomas de Zamora (UNLZ). Revista Electrónica sobre TecnologÃa, Educación y Sociedad, 4(7). Retrived from http://www.ctes.org.mx/index.php/ctes/article/viewFile/659/752
Peres, S. M., & Lima, C. A. M. (2015). Medidas de avaliação de agrupamentos (Clustering) [Evaluation measures of clustering]. Retrieved from http://each.uspnet.usp.br/sarajane/wp-content/uploads/2015/11/ avaliacao_clustering.pdf
Pifarré, K. T. (2015). MetodologÃa para la creación de conocimiento en los entornos virtuales de enseñanza mediante herramientas de Business Intelligence. Retrieved from http://hdl.handle.net/10803/385623
Preidys, S., & Sakalauskas, L. (2010). Analysis of students' study activities in virtual learning environments using data mining methods. In Technological and Economic Development 16(1), 94-108. doi: 10.3846/tede.2010.06.
Ramos, W. M., Almeida, T. R. de, & Nóbrega, G. (2016). Estudo sobre padrões de participação e avaliação da satisfação discente em disciplina hÃbrida no ensino superior por meio de mineração de dados [Study on patterns of participation and evaluation of student satisfaction in hybrid discipline in superior education through data mining] [PDF]. Retrieved from http://www.aforges.org/wp-content/uploads/2016 /11/16-Wilsa-Maria-Ramos-et-al_Estudo-sobre-padroes-de-participacao.pdf
Witten, I.H., & Frank E. (2005). Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.). San Francisco, CA: Elsevier. Retrieved from ftp://ftp.ingv.it/pub/manuela.sbarra/Data%20Mining%20Practical%20Machine%20Learning%20Tools%20and%20Techniques%20-%20WEKA.pdf
Tan, P. N., Steinbach, M., & Kumar, V. (2005). Introduction to Data Mining (1ª ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc. Retrieved from https://www-users.cs.umn.edu/~kumar001/dmbook/dmbook_2ed.jpg
Therneau, E. J., & Terry, M. (2018). An Introduction to Recursive Partitioning Using the RPART Routines [PDF]. Retrieved from
https://cran.r-project.org/web/packages/rpart/ vignettes/longintro.pdf
Turrioni, A. M. S., & Stano, R. C. M. T. (2009). Critérios de avaliação para a educação a distância [Evaluation criteria for education distance]. Paper presented at the XXII Ibero-American Congress of Distance Education, Manaus, AM, Brazil.
Zacharis, N. Z. (2018). Classification and Regression Trees (CART) for Predictive Modeling in Blended Learning. I. J. Intelligent Systems and Applications, 3, 1-9. doi: 10.5815/ijisa.2018.03.01 Retrieved from http://www.mecs-press.org.
Refbacks
- There are currently no refbacks.
e-ISSN: 1694-2116
p-ISSN: 1694-2493