The Effectiveness of Using Three-Dimensional Visualization Tools to Improve Students’ Understanding of Medicinal Chemistry and Advanced Drug Design Concepts
Abstract
Computer technology is an integral part of modern research. Most undergraduate pharmacy students are not aware of the use of these techniques in the drug design process. Understanding drug-target interactions plays a vital role in the drug design process, however, teaching the molecular basis of drug action is one of the major challenges we face in medicinal chemistry courses. The increase in the availability of three-dimensional macromolecule crystal structures and computer visualization software have provided better tools to study the drugs effect at the molecular level. This study evaluates the effectiveness of using three-dimensional macromolecule visualization tools in medicinal chemistry lectures on the students understanding of the molecular basis of drug action and drug design concepts. The different examples presented in this work are part of the teaching material that were developed to suite the learning objectives of the course. In addition, the “macromolecular drug targets assignment†was introduced to the course in order to allow the students to have practical experience using the new in silico techniques. Two hundred seventy students were surveyed over the past five years, the result showed that the new teaching tools have increased students’ interest in medicinal chemistry and allowed them to develop better understanding of the effect of structural modification on compounds’ activity and structure activity relationship. In addition, it gave them an insight into the advanced methods used in drug design.Â
https://doi.org/10.26803/ijlter.19.4.11
Keywords
Full Text:
PDFReferences
Abreu, P. A., Carvalho, K. D. L., Rabelo, V. W.H., & Castro, H. C. (2019). Computational strategy for visualizing structures and teaching biochemistry. Biochemistry and Molecular Biology Education, 47(1), 76-84. doi:10.1002/bmb.21199
Anderson, A. C. (2012). Structure-based functional design of drugs: from target to lead compound. Methods in Molecular Biology, 823, 359-366. doi:10.1007/978-1-60327-216-2_23
Bates, A. D., & Maxwell, A. (2005). DNA topology: Oxford University Press, USA.
Beadle, B. M., Nicholas, R. A., & Shoichet, B. K. (2001). Interaction energies between beta-lactam antibiotics and E. coli penicillin-binding protein 5 by reversible thermal denaturation. Protein Science, 10(6), 1254-1259. doi:10.1110/ps.52001
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res, 28, 235–242. doi:10.1093/nar/28.1.235
Bledsoe, R. K., Madauss, K. P., Holt, J. A., Apolito, C. J., Lambert, M. H., Pearce, K. H., Stanley, T. B., Stewart, E. L., Trump, R. P., Willson, T. M., & Williams, S. P. (2005). A Ligand-mediated Hydrogen Bond Network Required for the Activation of the Mineralocorticoid Receptor. Journal of Biological Chemistry, 280(35), 31283-31293. doi:10.1074/jbc.M504098200
Blower, T. R., Williamson, B. H., Kerns, R. J., & Berger, J. M. (2016). Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences of the United States of America, 113(7), 1706-1713. doi:10.1073/pnas.1525047113
Carvalho, I., Borges, Ã. D. L., & Bernardes, L. S. C. (2005). Medicinal Chemistry and Molecular Modeling: An Integration To Teach Drug Structure–Activity Relationship and the Molecular Basis of Drug Action. Journal of Chemical Education, 82(4), 588-596. doi:10.1021/ed082p588
Chavent, M., Lévy, B., Krone, M., Bidmon, K., Nominé, J.-P., Ertl, T., & Baaden, M. (2011). GPU-powered tools boost molecular visualization. Briefings in Bioinformatics, 12(6), 689-701. doi:10.1093/bib/bbq089
Cooper, A. K., & Oliver-Hoyo, M. T. (2017). Creating 3D physical models to probe student understanding of macromolecular structure. Biochemistry and Molecular Biology Education, 45(6), 491-500. doi:10.1002/bmb.21076
Copeland, R. A., Pompliano, D. L., & Meek, T. D. (2006). Drug–target residence time and its implications for lead optimization. Nature Reviews: Drug Discovery, 5(9), 730-739. doi:10.1038/nrd2082
Dasari, S., & Tchounwou, P. B. (2014). Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology, 740, 364-378. doi:10.1016/j.ejphar.2014.07.025
Dassault Systèmes BIOVIA. (2017). BIOVIA Discovery Studio Visualizer. Release 2017 R2, San Diego: Dassault Systèmes, 2017.
Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and molecular biology reviews : MMBR, 61(3), 377-392.
Fagart, J., Seguin, C., Pinon, G. M., & Rafestin-Oblin, M. E. (2005). The Met852 Residue Is a Key Organizer of the Ligand-Binding Cavity of the Human Mineralocorticoid Receptor. Molecular Pharmacology, 67(5), 1714-1722. doi:10.1124/mol.104.010710
Ferk, V., Vrtacnik, M., Blejec, A., & Gril, A. (2003). Students' understanding of molecular structure representations. International Journal of Science Education, 25(10), 1227-1245. doi:10.1080/0950069022000038231
Fernandes, J. P. S. (2017). The Importance of Medicinal Chemistry Knowledge in the Clinical Pharmacist’s Education. American Journal of Pharmaceutical Education, 82(2), 106-114. doi:10.5688/ajpe6083
Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure-based drug design strategies. Molecules, 20(7), 13384-13421. doi:10.3390/molecules200713384
Günther, D., Boto, R. A., Contreras-Garcia, J., Piquemal, J., & Tierny, J. (2014). Characterizing Molecular Interactions in Chemical Systems. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2476-2485. doi:10.1109/tvcg.2014.2346403
Hasui, T., Matsunaga, N., Ora, T., Ohyabu, N., Nishigaki, N., Imura, Y., Igata, Y., Matsui, H., Motoyaji, T., Tanaka, T., Habuka, N., Sogabe, S., Ono, M., Siedem, C. S., Tang, T. P., Gauthier, C., De Meese, L. A., Boyd, S. A., & Fukumoto, S. (2011). Identification of Benzoxazin-3-one Derivatives as Novel, Potent, and Selective Nonsteroidal Mineralocorticoid Receptor Antagonists. Journal of Medicinal Chemistry, 54(24), 8616-8631. doi:10.1021/jm2011645
Hayes, J. M. (2014). An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry. Journal of Chemical Education, 91(6), 919-923. doi:10.1021/ed400486d
Hevener, K., Verstak, T. A., Lutat, K. E., Riggsbee, D. L., & Mooney, J. W. (2018). Recent developments in topoisomerase-targeted cancer chemotherapy. Acta pharmaceutica Sinica. B, 8(6), 844-861. doi:10.1016/j.apsb.2018.07.008
Kauppi, B., Jakob, C., Färnegårdh, M., Yang, J., Ahola, H., Alarcon, M., Calles, K., Engström, O., Harlan, J., Muchmore, S., Ramqvist, A. K., Thorell, S., Öhman, L., Greer, J., Gustafsson, J.-Å., Carlstedt-Duke, J., & Carlquist, M. (2003). The Three-dimensional Structures of Antagonistic and Agonistic Forms of the Glucocorticoid Receptor Ligand-binding Domain: RU-486 induces a transconformation that leads to active antagonism. Journal of Biological Chemistry, 278(25), 22748-22754. doi:10.1074/jbc.M212711200
Kishida, H., Unzai, S., Roper, D. I., Lloyd, A., Park, S. Y., & Tame, J. R. H. (2006). Crystal Structure of Penicillin Binding Protein 4 (dacB) from Escherichia coli, both in the Native Form and Covalently Linked to Various Antibiotics. Biochemistry, 45(3), 783-792. doi:10.1021/bi051533t
Kurup, S., & Sakharkar, P. (2019). Three-Dimensional Visualization of Kinase Inhibitors as Therapeutically Relevant Examples To Reinforce Types of Enzyme Inhibitors. Journal of Chemical Education, 96(2), 296-303. doi:10.1021/acs.jchemed.8b00403
Lemke, T. L., & Williams, D. A. (2007). Principles of medicinal chemistry, Foye's. Philadelphia: Lippincott Williams & Wilkins.
Nicola, G., Tomberg, J., Pratt, R. F., Nicholas, R. A., & Davies, C. (2010). Crystal structures of covalent complexes of β-lactam antibiotics with Escherichia coli penicillin-binding protein 5: toward an understanding of antibiotic specificity. Biochemistry, 49(37), 8094-8104. doi:10.1021/bi100879m
O'Donoghue, S. I., Goodsell, D. S., Frangakis, A. S., Jossinet, F., Laskowski, R. A., Nilges, M., Saibil, H. R., Schafferhans, A., Wade, R. C., Westhof, E., & Olson, A. J. (2010). Visualization of macromolecular structures. Nature Methods, 7(3), S42-S55. doi:10.1038/nmeth.1427
Ohndorf, U. M., Rould, M. A., He, Q., Pabo, C. O., & Lippard, S. J. (1999). Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature, 399(6737), 708-712. doi:10.1038/21460
Olson, A. J. (2018). Perspectives on Structural Molecular Biology Visualization: From Past to Present. Journal of Molecular Biology, 430(21), 3997-4012. doi:10.1016/j.jmb.2018.07.009
Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B., Bittman, R., Hurley, S., Kleiman, J., & Gatlin, M. (2003). Eplerenone, a Selective Aldosterone Blocker, in Patients with Left Ventricular Dysfunction after Myocardial Infarction. New England Journal of Medicine, 348(14), 1309-1321. doi:10.1056/NEJMoa030207
Pommier, Y., Leo, E., Zhang, H., & Marchand, C. (2010). DNA Topoisomerases and Their Poisoning by Anticancer and Antibacterial Drugs. Chemistry & Biology, 17(5), 421-433.
Satyanarayanajois, S. D. (2010). Active-Learning Exercises to Teach Drug-Receptor Interactions in a Medicinal Chemistry Course. American Journal of Pharmaceutical Education, 74(8), 147-156. doi:10.5688/aj7408147
Satyanarayanajois, S. D., & Hill, R. A. (2011). Medicinal chemistry for 2020. Future Med. Chem., 3(14), 1765-1786. doi:10.4155/fmc.11.135
Struthers, A., Krum, H., & Williams, G. H. (2008). A Comparison of the Aldosterone-blocking Agents Eplerenone and Spironolactone. Clinical Cardiology, 31(4), 153-158. doi:10.1002/clc.20324
Szarecka, A., & Dobson, C. (2019). Protein Structure Analysis: Introducing Students to Rational Drug Design. The American Biology Teacher, 81(6), 423-429. doi:10.1525/abt.2019.81.6.423
Tantillo, D. J., Siegel, J. B., Saunders, C. M., Palazzo, T. A., Painter, P. P., O’Brien, T. E., Nuñez, N. N., Nouri, D. H., Lodewyk, M. W., Hudson, B. M., Hare, S. R., & Davis, R. L. (2019). Computer-Aided Drug Design for Undergraduates. Journal of Chemical Education, 96(5), 920-925. doi:10.1021/acs.jchemed.8b00712
Tavares, M. T., Primi, M. C., Silva, N. A. T. F., Carvalho, C. F., Cunha, M. R., & Parise-Filho, R. (2017). Using an in Silico Approach To Teach 3D Pharmacodynamics of the Drug–Target Interaction Process Focusing on Selective COX2 Inhibition by Celecoxib. Journal of Chemical Education, 94(3), 380-387. doi:10.1021/acs.jchemed.6b00288
Vecchio, L. D., Procaccio, M., Viganò, S., & Cusi, D. (2007). Mechanisms of Disease: the role of aldosterone in kidney damage and clinical benefits of its blockade. Nature Clinical Practice Nephrology, 3, 42-49. doi:10.1038/ncpneph0362
Venditto, V. J., & Simanek, E. E. (2010). Cancer therapies utilizing the camptothecins: a review of the in vivo literature. Molecular Pharmaceutics, 7(2), 307-349. doi:10.1021/mp900243b
Venkataraman, B. (2009). Visualization and interactivity in the teaching of chemistry to science and non-science students. Chemistry Education Research Practrice, 10(1), 62-69. doi:10.1039/b901462b
Wu, C.-C., Li, T.-K., Farh, L., Lin, L.-Y., Lin, T.-S., Yu, Y.-J., Yen, T.-J., Chiang, C.-W., & Chan, N.-L. (2011). Structural Basis of Type II Topoisomerase Inhibition by the Anticancer Drug Etoposide. Science, 333(6041), 459-462. doi:10.1126/science.1204117
Yu, W., & MacKerell, A. D., Jr. (2017). Computer-Aided Drug Design Methods. Methods in Molecular Biology, 1520, 85-106. doi:10.1007/978-1-4939-6634-9_5
Refbacks
- There are currently no refbacks.
e-ISSN: 1694-2116
p-ISSN: 1694-2493