A Bibliometric Review of Studies about the Acceptance of Artificial Intelligence Technologies in Teaching and Learning in Higher Education
Abstract
The growing incorporation of artificial intelligence (AI) tools in higher education (HE) has led to the use of indicators that allow the real impact of these tools to be identified in the teaching and learning process. In this sense, this study developed a bibliometric review on the acceptance of AI technologies in HE, providing an analysis of indicators on scientific production, with the aim of identifying prevalent thematic areas and knowledge gaps. From a methodological point of view, this study was carried out using a quantitative approach with a descriptive level, utilising 56 publications drawn from the Scopus database. The results show a sustained evolution with a growing trend in scientific production since 2021. The most predominant thematic area is evaluation of the acceptance of AI technologies in HE, making greater use of the Technology Acceptance Model (TAM) and the Unified Acceptance and Use of Technology theory (UTAUT). Therefore, it was concluded that the existing literature shows a sustained interest in investigating the acceptance of AI technologies due to the importance of determining the impact generated by their applications in different contexts or scenarios of the reality of HE in regard to the extent that AI technology is developed. This is because, on some occasions, its application does not necessarily lead to meeting the expectations raised in the teaching and learning processes. Finally, the gaps that need to be addressed in future research are "cultural and contextual diversity in AI acceptance", "emerging models of AI acceptance", and "critical elements influencing the acceptance of AI technologies", in HE.
https://doi.org/10.26803/ijlter.23.3.14
Keywords
Full Text:
PDFReferences
Akhmadieva, R. S., Udina, N. N., Kosheleva, Y. P., Zhdanov, S. P., Timofeeva, M. O., & Budkevich, R. L. (2023). Artificial intelligence in science education: A bibliometric review. Contemporary Educational Technology, 15(4), 1-13. https://doi.org/10.30935/cedtech/13587
Al Shamsi, J. H., Al-Emran, M., & Shaalan, K. (2022). Understanding key drivers affecting students’ use of artificial intelligence-based voice assistants. Education and Information Technologies, 27(1), 8071–8091. https://link.springer.com/article/10.1007/s10639-022-10947-3
Albuja, S. B., & Guadalupe A. J. (2022). Areas of study and application of artificial intelligence in the best-rated universities in Ecuador. UPSE Scientific and Technological Journal, 9(2), 58-74. https://doi.org/10.26423/rctu.v9i2.705
Ayuso-del Puerto, D., & Gutiérrez-Esteban, P. (2022). Artificial Intelligence as an educational resource during initial teacher training. Studies and Research Journal, 25(2), 347-358. https://www.redalyc.org/journal/3314/331470794017/html/
Bicen, H., Bogdan, R., & Petruc, S. I. (2023). Artificial Intelligence in Higher Education: A Bibliometric Analysis. Workshops at the 6th International Conference on Applied Informatics 2023, October 26–28, 2023, Guayaquil, Ecuador, 1-11. https://ceur-ws.org/Vol-3520/icaiw_waai_1.pdf
Cano, F. D. P., Delgado, J. J. J., & Cabrera, G. P. (2023). Artificial Intelligence in Higher Education: Computer Engineering. Building the Education of the Future in Areas of Engineering, Economics and STEM, 54-66. https://www.dykinson.com/libros/construyendo-la-educacion-del-futuro-en-areas-de-ingenieria-economia-y-stem/9788411701501/
Chaljub, H. J., Peguero G. J. R., & Mendoza T. E. J. (2022). Technological acceptance of the use of augmented reality by secondary school students: a look at a Chemistry class. Technology, Science and Education Journal, 23, 49–68. https://doi.org/10.51302/tce.2022.864
Chamorro-Atalaya, O., Durán-Herrera, V., Suarez-Bazalar, R., Nieves-Barreto, C., Tarazona-Padilla, J., Rojas-Carbajal, M., Cruz-Telada, Y., Caller-Luna, J., Alarcón-Anco, R., & Arévalo-Tuesta, J. A. (2023). Inclusion of Metaverses in the Development of the Flipped Classroom in the University environment: Bibliometric Analysis of Indexed Scientific Production in SCOPUS. International Journal of Learning, Teaching and Educational Research, 22(10), 247-270. https://doi.org/10.26803/ijlter.22.10.14
Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: a quantitative analysis using structural equation modelling. Education and Information Technologies, 25(1), 3443–3463. https://doi.org/10.1007/s10639-020-10159-7
Chávez, M. H. R. (2021). Intelligent Tutoring Systems and their application in higher education. Ibero-American Journal for Research and Educational Development RIDE, 12(22), 1-25. https://doi.org/10.23913/ride.v11i22.848
Chávez, S. M. E., Labrada, M. E., Carbajal, D. E., Pineda G. E., & Alatristre M. Y. (2023). Generative Artificial Intelligence to strengthen Higher Education. LATAM Latin American Journal of Social Sciences and Humanities, 4(3), 767–784. https://doi.org/10.56712/latam.v4i3.1113
Cruz-Benito, J., Sánchez-Prieto, J. C., Therón, R., & García-Peñalvo, F. J. (2019). Measuring Students’ Acceptance to AI-Driven Assessment in eLearning: Proposing a First TAM-Based Research Model. HCII 2019. In P. Zaphiris & A. Ioannou (eds.), Learning and Collaboration Technologies. Designing Learning Experiences. HCII 2019. Lecture Notes in Computer Science (vol 11590, pp.15-25). Cham Springer. https://doi.org/10.1007/978-3-030-21814-0_2 Damerji, H., & Salimi, A. (2021). Mediating effect of use perceptions on technology readiness and adoption of artificial intelligence in accounting. Accounting Education, 30(2), 107-130. https://doi.org/10.1080/09639284.2021.1872035
Darayseh, A. A. (2023). Acceptance of artificial intelligence in teaching science: Science teachers’ perspective. Computers and Education: Artificial Intelligence, 4(1), 1-9. https://doi.org/10.1016/j.caeai.2023.100132
Dekker, I., De Jong, E.., Schippers, M. C., De Brujin-Smolders, M., Alexiou, A., & Giesbers, B. (2020). Optimizing Students’ Mental Health and Academic Performance: AI-Enhanced Life Crafting. Frontier Psychology, 11(1), 1-15. https://doi.org/10.3389/fpsyg.2020.01063
García-Peñalvo, F. J., Llorens-Largo, F., & Vidal, J. (2024). The new reality of education in the face of advances in generative artificial intelligence. RIED-Ibero-American Journal of Distance Education, 27(1). https://doi.org/10.5944/ried.27.1.37716
García, V. J. J. (2021). Implication of Artificial Intelligence in Virtual Classrooms for Higher Education. Orbis Tertius UPAL Journal, 5(10), 31-52. https://www.biblioteca.upal.edu.bo/htdocs/ojs/index.php/orbis/article/view/98
Gallent-Torres, C., Zapata-González, A., & Ortego-Hernando, J. L. (2023). The impact of generative artificial intelligence in higher education: a look from ethics and academic integrity. RELIEVE Journal, 29(2), 1-20. http://doi.org/10.30827/relieve.v29i2.29134
Gómez, L. J. S. (2022). The Future of Higher Education, a Look from Artificial Intelligence. In XVII International Congress on the Competency-Based Approach CIEBC2022-The challenges of education in Latin America, March 23 to 25, Cancun, Mexico, pp. 103-114. https://editorialcimted.com/wp-content/uploads/2022/07/Los-retos-de-la-educaci%C3%B3n-en-tiempos-de-pandemia.pdf
González-Sánchez, J. L., Villota-García, F. R., Moscoso-Parra, A. E., Garces-Calva, S. W., & Bazurto-Arévalo, B. M. (2023). Application of Artificial Intelligence in Higher Education. Scientific Journal Domain of Sciences, 9(3), 1097-1108. https://doi.org/10.23857/dc.v9i3.3488
Harmon, J., Pitt, V., Summons, P., & Inder, K. J. (2020). Use of artificial intelligence and virtual reality within clinical simulation for nursing pain education: A scoping review. Nurse Education, 97(1), 1-14. https://doi.org/10.1016/j.nedt.2020.104700
Hinojo-Lucena, F.-J., Aznar-Díaz, I., Cáceres-Reche, M.-P., & Romero-Rodríguez, J.-M. (2019). Artificial Intelligence in Higher Education: A Bibliometric Study on its Impact in the Scientific Literature. Education Sciences, 9(51), 1-9. http://dx.doi.org/10.3390/educsci9010051
Jiménez-Martínez, K. A., Zamudio-Rodríguez, B. R., & Martínez-Moreno, M. K. (2021). Evaluation of the acceptance of digital tools for teaching through the Technological acceptance model. International Journal of Sustainable Regional Development, 6(1), 38-44.
Kashive, N., Powale, L., & Kashive, K. (2021). Understanding user perception toward artificial intelligence (AI) enabled e-learning. International Journal of Information and Learning Technology, 38(1), 1-19. https://doi.org/10.1108/IJILT-05-2020-0090
Kim, J., & Shim, J. (2022). Development of an AR-Based AI Education App for Non-Majors. IEEE Xplore, 10(1), 14149-14156. https://ieeexplore.ieee.org/ielx7/6287639/9668973/09690157.pdf
Lara, R. A. M., Criollo, L. R. S., Calderón, C. J. C., & Matamba, B. E. B. (2023). Artificial Intelligence; analysis of the Present and Future in Higher Education. G-ner@ndo Journal, 4(1), 861–887. https://revista.gnerando.org/revista/index.php/RCMG/article/view/98
Linares, L. J., López-Gómez, J. A., Martín-Baos, J. A., Romero, F. P., & Serrano-Guerrero, J. (2023). ChatGPT: reflections on the emergence of generative artificial intelligence in university teaching. Proceedings of the Conference on University Teaching of Informatics (JENUI), 8(1), 113-120. https://dialnet.unirioja.es/servlet/articulo?codigo=9155118
López M. N. E., Rossetti L. S. R., Rojas R. I. S., & Coronado G. M. A. (2021). Digital tools in times of Covid-19: perception of Higher Education teachers in Mexico. RIDE Ibero-American Journal for Educational Research and Development, 12(23), 1-28. https://doi.org/10.23913/ride.v12i23.1108
Malik, R., Shrama, A., Trivedi, S., & Mishra, R. (2021). Adoption of Chatbots for Learning among University Students: Role of Perceived Convenience and Enhanced Performance. International Journal of Emerging Technologies in Learning, 16(18), 200–212. https://doi.org/10.3991/ijet.v16i18.24315
Maphosa, V., & Maphosa, M. (2023). Artificial intelligence in higher education: a bibliometric analysis and topic modeling approach. Applied Artificial Intelligence, 37(1), 1-24. https://doi.org/10.1080/08839514.2023.2261730
Marín, G. –M. A. (2023). Chatgpt, advantages, disadvantages and its use in higher education. Killkana Social Journal, 7(1), 3-8. https://doi.org/10.26871/killkanasocial.v7i1.1270
Metli, A. (2023). Articles on education and artificial intelligence: A bibliometric analysis. Journal of Social Sciences and Education, 6(1), 279-312. https://dergipark.org.tr/tr/download/article-file/3372035
Mora-Cruz, A., Palos-Sánchez, P. R., & Murrel-Blanco, M. (2023). E-learning platforms and their impact on University Education during the COVID-19 pandemic. Virtual Campus Journal, 12(1), 53-66. https://doi.org/10.54988/cv.2023.1.1005
Morales-Sierra, M. E., Molano-Cardeño, H., Cardona-Valencia, D., & Delgado-Cadavid, D. (2021). Analysis of the perception of teachers and students on the use of traditional and innovative teaching methodologies in higher education. GEON Journal (Management, Organizations and Business), 8(1), 1-19. https://doi.org/10.22579/23463910.224
Moreira, Y. M. S., Alvarez, H. E. L., Encarnación, W. G. M., & Gómez, V. A. P. (2023). The Future of Artificial Intelligence for Education in Technical and Technological Institutes. Conrado Journal, 19(93), 27-34. https://conrado.ucf.edu.cu/index.php/conrado/article/view/3156
Muñoz, I. M. M., & Espinoza, R. R. L. (2022). Technological Acceptance Models in the Evaluation of Educational Software. Website development for TAM application. Thesis, Faculty of Philosophy, Letters and Educational Sciences, Guayaquil University, Guayaquil, Ecuador. http://repositorio.ug.edu.ec/handle/redug/61061
Nazari, N., Shabbir, M. S., & Setiawan, R. (2021). Application of Artificial Intelligence powered digital writing assistant in higher education: randomized controlled trial. Heliyon, 7(1), 1-9. https://doi.org/10.1016/j.heliyon.2021.e07014
Ossa, C., & Willat, C. (2023). Providing academic writing feedback assisted by Generative Artificial Intelligence in initial teacher education contexts. European Journal of Education and Psychology, 16(2), 1-16. https://revistas.uautonoma.cl/index.php/ejep/article/view/2193
Parra-Sánchez, J. S. (2022). Potentialities of Artificial Intelligence in Higher Education: An Approach from Personalization. Technological-Educational Journal Teachers, 14(1), 19-27. https://doi.org/10.37843/rted.v14i1.296
Pimbo-Tibán, A. G., Manotoa-Labre, H. R., Medina-Chicaiza, R. P., & Morocho-Lara, H. D. (2023). Learning and Knowledge Technologies: implementation acceptance analysis based on the TAM Model. ODIGOS Journal, 4(1), 89–110. https://doi.org/10.35290/ro.v4n1.2023.752
Pimentel, J. J. A., & Ibarra, S. P. C. (2022). EpAA: Environment for Learning Algorithms. A flexible educational learning experience. Edutec: Electronic Journal of Educational Technology, 79(1), 63-79. https://doi.org/10.21556/edutec.2022.79.2451
Pino, V. J. (2022). Validation of the Technology Acceptance Model (TAM) to measure digital competence in Primary Education students. EDMETIC, Journal of Media Education and ICT, 11(1), 1-17. https://doi.org/10.21071/edmetic.v11i1.13508
Pintado, L. S., Prado, R. S., Peláez, C. O., & Aguilar W. A. (2023). Artificial intelligence and sustainability: The commitment of a higher education institution. Science Magazine, 8(4), 12-28. https://doi.org/10.33262/rmc.v8i4.2954
Ramos, F. M., & Ortiz, M. V. R. (2022). Effect of the quality of Internet access on the acceptance of an information system in university students. Iberian Journal of Information Systems and Technologies, e47, 404-413. https://www.proquest.com/openview/251d1cc6aee28f67ff1620c267ac7306/1?pq-origsite=gscholar&cbl=1006393
Rico-Bautista, D., Maestre-Gongora, G., & Guerrero, C. D. (2020). Smart University: IoT adoption model. 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), 27-28 July 2020, London, UK. https://doi.org/10.1109/WorldS450073.2020.9210369
Roig-Vila, R., Rojas-Viteri, J., & Lascano-Herrera, N.A. (2022). Analysis of the use of Moodle from the perspective of the TAM model in times of pandemic. RiiTE Interuniversity Journal of Research in Educational Technology, 12(1), 95-112. https://doi.org/10.6018/riite.519341
Roy, R., Babakerkhell, M. D., Mukherjee, S., Pal, D., & Funikul, S. (2022). Evaluating the Intention for the Adoption of Artificial Intelligence-Based Robots in the University to Educate the Students. IEEE Xplore, 10(1), 1-15. https://ieeexplore.ieee.org/ielx7/6287639/6514899/09966560.pdf
Saltos, G. D. C., Oyarvide, W. V., Sánchez, E. A., & Reyes, Y. M. (2023). Bibliometric analysis on neuroscience, artificial intelligence and robotics studies: emphasis on disruptive technologies in education. Salud, Ciencia y Tecnología, 3(1), 1-13. https://revista.saludcyt.ar/ojs/index.php/sct/article/view/362
Sánchez, M. M., & Carbajal, D. E. (2023). Generative Artificial Intelligence and University Education. Educational Profiles, 45(1), 70-86. https://doi.org/10.22201/iisue.24486167e.2023.Especial.61692
Sánchez-Prieto, J. C., Cruz-Benito, J., Theron, R., & García-Peñalvo, F. J. (2019). How to Measure Teachers' Acceptance of AI-driven Assessment in eLearning: A TAM-based Proposal. TEEM'19: Proceedings of the Seventh International Conference on Technological Ecosystems for Enhancing Multiculturality, October 2019, 181–186. https://doi.org/10.1145/3362789.3362918
?im?ek, A. S., & Ate?, H. (2022). The extended technology acceptance model for Web 2.0 technologies in teaching. Innoeduca. International Journal of Technology and Educational Innovation, 8(2), 165-183. https://doi.org/10.24310/innoeduca.2022.v8i2.15413
Valencia-Arias, A., Gómez-Molina, S., Vélez-Holguín, R. M., & Cardona-Acevedo, S. (2023). Intention to use Mobile learning (m-learning) in Virtual programs: a Hybrid Technology Acceptance model (TAM) and the theory of planned behavior (TPB). University Training Journal, 16(2), 25-34. http://dx.doi.org/10.4067/S0718-50062023000200025
Valverde, R. Z. (2021). A view of the opportunities and threats of Artificial Intelligence in Higher Education. Institutional Academic Journal, 3(2), 49–61. https://rai.usam.ac.cr/index.php/raiusam/article/view/57
Vázquez, M. L., Alcivar, I. A. M., & Aguilar, G. F. C. (2022). Higher Education 4.0: challenges and perspectives. Scientific Series of the University of Computer Sciences, 15(4), 71-89. https://publicaciones.uci.cu/index.php/serie/article/view/1058
Vera, F. (2023). Integration of Artificial Intelligence in Higher education: Challenges and opportunities. Transformar Electronic Journal, 4(1), 17-34. https://www.revistatransformar.cl/index.php/transformar/article/view/84
Villalba-Condori, K. O., Maldonado-Mahauad, J., Berroa-Garate, H. C., Lavalle-Gonzales, A. K., Rodriguez-Quispe, J. L., Becerra-Castillo, S. G., Arias-Chávez, D., & Flores-Tapia, J. A. (2021). Technological Acceptance and Addiction to Social Networks in Virtual Mandatory Contexts. Education in the Knowledge Society, 22(1), 1-16. https://doi.org/10.14201/eks.25424
Wang, Y., Liu, C., & Tu, Y.-F. (2021). Factors Affecting the Adoption of AI-Based Applications in Higher Education. Educational Technology & Society, 24(3), 116-129. https://www.jstor.org/stable/27032860
Wu, C.-H., Liu, C. H., & Huang, Y. M. (2022). The exploration of continuous learning intention in STEAM education through attitude, motivation, and cognitive load. International Journal of STEM Education, 9(35), 1-22. https://doi.org/10.1186/s40594-022-00346-y
Zamora, V. Y. & Mendoza E. M. C. (2023). La inteligencia artificial y el futuro de la educación superior: Desafíos y oportunidades. Pedagogical Horizons, 25(1), 1-13. https://horizontespedagogicos.ibero.edu.co/article/view/25101
Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., Liu, J.-B., Yuan, J., & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Hindawi, 1(1), 1-18. https://doi.org/10.1155/2021/8812542
Refbacks
- There are currently no refbacks.
e-ISSN: 1694-2116
p-ISSN: 1694-2493